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Noise, regularizers, and unrealizable scenarios in online learning from restricted training sets
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We study the dynamics of online learning in multilayer neural networks where training examples are
sampled with repetition and where the number of examples scales with the number of network weights. The
analysis is carried out using the dynamical replica method aimed at obtaining a closed set of coupled equations
for a set of macroscopic variables from which both training and generalization errors can be calculated. We
focus on scenarios whereby training examples are corrupted by additive Gaussian output noise and regularizers
are introduced to improve the network performance. The dependence of the dynamics on the noise level, with
and without regularizers, is examined, as well as that of the asymptotic values obtained for both training and
generalization errors. We also demonstrate the ability of the method to approximate the learning dynamics in
structurally unrealizable scenarios. The theoretical results show good agreement with those obtained from
computer simulations.
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I. INTRODUCTION

Artificial neural networks provide an important tool fo
tackling nonlinear problems complementary to existing s
tistical methods~for review see@1,2#!. The optimal selection
of the network parameters on the basis of examples is ter
learning and may be carried out in a variety of methods
techniques. The efficiency and success of the training p
cess are in the heart of the method itself and play a sig
cant part in determining the usefulness of artificial neu
networks as a whole.

Significant effort has been invested over the years in
timizing the training methods as well as the choice of tra
ing parameters and regularization methods. These have
successfully used in practice, although most of the train
methods used as well as the setting of the training coe
cients are based on heuristic observations.

One of the most powerful and commonly used approac
to training large layered networks is that of online learni
of continuous functions via gradient descent. Online learn
refers to the iterative modification of the network paramet
according to a predetermined training rule following succ
sive presentations of single training examples, each re
senting a specific input vector and the corresponding out
This approach has been widely and successfully used
training large networks@3# and is arguably the most efficien
technique for these tasks.

Significant progress has been made in analyzing the
namics of supervised online learning in multilayer netwo
via methods of statistical physics~reviews can be found in
@4,5#!. Most of the analyses~e.g.,@6–8#! concentrate on the
case of infinite training sets, where training examples
sampled without repetition and in which there is no corre
tion between the network parameters and the examples
sented at each training step. They successfully explain
various training phases and the emergence of generaliza
abilities but lack a vital aspect of the learning process, wh
may seem insignificant at first sight, assuming that the tra
ing set is large. However, the emerging correlations betw
successive training steps give rise to some of the most ha
1063-651X/2001/64~1!/011919~18!/$20.00 64 0119
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ful effects in neural network training, such as overfitting,
which the above theory is oblivious.

A more realistic scenario is that where the number
training examples scales with the number of free parame
and the examples are sampled with repetition. This gives
to correlations between the network parameters and the tr
ing examples, which clearly affect the learning process. O
of the most significant aspects of having a fixed example
is the distinction between the two key performance m
sures: thetraining error measuring network performanc
with respect to the restricted training set, and thetest (gen-
eralization) error calculated for all possible inputs sample
from the true distribution. The former may be monitored
practical training scenarios, while the latter~the minimiza-
tion of which is the true aim of the learning process! can
only be assessed up to some confidence level.

The analyses of learning from fixed example sets int
duced so far@9–13# have mostly considered single layer sy
tems, focusing on specific~usually simple! learning rules. In
addition, most of these studies have been restricted to b
learning, where the network parameters are modified o
after the complete example set has been presented.

The current paper builds upon a new approach we
cently presented for the case of single layer networks@14#,
based on the dynamical replica method, which enables on
analyze a broad range of training rules and network confi
rations that can treat both online and batch learning s
narios. Preliminary analysis of noiseless, realizable, and
realizable learning scenarios in multilayer networks we
briefly described in@15#. Here, we extend the analysis to th
case where training examples are corrupted by addi
Gaussian output noise and examine the effect of regular
tion on the training dynamics. We also study the depende
of the asymptotic training and generalization errors on
size of the example set provided, with and without regul
ization. For brevity we will restrict the analysis to the case
online learning and not consider here the case of batch le
ing at all.

The paper is organized as follows. Section II provides
general framework and the theoretical basis for the analy
©2001 The American Physical Society19-1
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In Sec. III we present results obtained for the noiseless r
izable case, followed by results obtained for an unrealiza
training scenario where the model network is incapable
realizing the underlying rule due to structural limitations
Sec. IV. Section V looks at cases where training examp
are corrupted by output Gaussian noise, while Sec. VI ex
ines the impact of regularization on the network perf
mance. We summarize our results and discuss the advan
and drawbacks of the current analysis in Sec. VII.

II. THE FRAMEWORK

We concentrate on information processing tasks in
form of maps from anN-dimensional input spacejPRN onto
a scalar zPR, realized through a parametrized functio
s(J,j)5( i 51

K g(Ji•j). This function can be viewed as a tw
layer neural network, whereg is the activation function of
the hidden units taken here to be the error functiong(x)
[erf(x/A2); J[$Ji%1< i<K is the set of input-to-hidden
adaptive weights for theK hidden nodes, and the hidden-t
output weights are set to 1. The activation of hidden nodi
under presentation of the input patternjm is denotedxi

m

5Ji•jm. This general configuration, usually referred to
the ‘‘soft committee machine’’@7,8#, encompasses most o
the properties of general multilayer networks. Training e
amples are drawn from a finite setD̃ and are of the form
(jm,zm) wherem51,2, . . . ,p andp5aN. The components
of the independently drawn input vectorsjm are uncorrelated
random variables with zero mean and unit variance. The
narios examined so far@15# focused on realizable and stru
turally unrealizable cases, where the corresponding outpuzm

for the various examples is given by a deterministic teac
of an architecture similar to the student, except for a poss
difference in the numberM of hidden units: zm

5(n51
M g(Bn•jm), whereB[$Bn%1<n<M is the set of input-

to-hidden adaptive weights for teacher-hidden nodes. In
paper we will also consider the case of noisy examp
where the teacher output is corrupted by additive Gaus
output noise, denoted asrm, the components of which ar
independently drawn uncorrelated random variables of z
mean and variances2, corrupting the different examples. I
this more general case the corresponding teacher output
the formzm5(n51

M g(Bn•jm)1rm. The activation of hidden
noden under presentation of the input patternjm is denoted
yn

m5Bn•jm. We will use indicesi , j ,k, . . . to refer to units
in the student network andn,m, . . . for units in the teache
network. The contribution to the local field due to the no
variable will be denoted asz. Sums over the various indice
will be considered from 1 toK or to M, respectively. The
general framework@14,15# allows for the analysis of any
training ruleG of the form

Jj
l 115Jj

l 1
h

N
j~ l !Gj@z l ,s l #2

g

N
Jj

l ~1!

where l represents the current time step in which a sin
example is randomly drawn fromD̃ and invokes the param
eter update. The last term on the right corresponds t
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simple quadratic regularization term parametrized byg,
commonly used in regression tasks where examples are
rupted by noise, the usefulness of which will be examined
the current study. Here we concentrate on the most comm
online learning scenario for regression tasks, where the fu
tion G together with the last term in Eq.~1! is the gradient
with respect to the parametersJ of the quadratic error mea
sure~per example!

E~J,j!5
1

2
@s~J,j!2z#21

1

2

g

h (
i 51

K

Ji•Ji

5
1

2 F(
i 51

K

g~xi !2 (
n51

M

g~yn!2zG2

1
1

2

g

h (
i 51

K

Ji•Ji , ~2!

andG is of the explicit form

Gi~xj 51 . . .K ,yn51 . . .M ,z!5A2

p
e2(1/2)xi

2F (
j 51

K

g~xj !

2 (
n51

M

g~yn!2zG . ~3!

In the case of an infinite training set there is no correlat
between the current example and those presented previo
As a consequence of that, no correlation between the stu
vectors and the examples is building up, and the joint pr
ability distribution for the student and teacher node acti
tionsx andy ~and the noisez) takes a multivariate Gaussia
form. This is no longer the case here, when such correlat
do exist and the joint probability distribution takes a mo
general form, which depends on the training patterns
changes dynamically throughout the learning process. In
case of corrupted training examples one should also cons
the emerging correlations between the student vectors
the noise corrupting the examples. Due to the pivotal r
played by this joint probability distribution it seems natur
to define it as one of the macroscopic variables@14#,

P~x,y,z,J!5
1

p (
m

)
i 51

K

d~xi2Ji•jm!)
n51

M

d~yn2Bn•jm!

3d~z2rm!, ~4!

together with the overlapsRin(J)5Ji•Bn ~between studen
and teacher weight vectors! andQik(J)5Ji•Jk ~between stu-
dent weight vectors!. An additional macroscopic variabl
that is worthwhile mentioning, although it is invariant wit
respect to the learning dynamics, isTnm5Bn•Bm , represent-
ing the overlap between the various teacher weight vect
Notice that most of the variables used are not observa
but are based on the teacher-student model used. To sim
the calculation we will only examine here the case of
thogonal teacher vectors of unit lengthTnm5dmn ; extending
the results to the general teacher case is straightforward.
9-2
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convenience we will also introduce the vectorr5(x,y,z) of
dimensionalityK1M11, representing student and teach
local fields and the noise contribution.

The main motivation in choosing these macroscopic v
ables is that in the thermodynamic limit,N→`, they are
sufficient for calculating the two main performance me
sures: the generalization error, which corresponds to ave
ing Ẽ(J,j)5(1/2)@s(J,j)2z#2 over the Gaussian input dis
tribution @8#

Eg5
1

p F(
i ,k

sin21
Qik

A11QiiA11Qkk

1(
n,m

sin21
Tnm

A11TnnA11Tmm

22(
i ,n

sin21
Rin

A11QiiA11Tnn
G1

1

2
s2 ~5!

and the training error

Et5K 1

2 F(
i 51

K

g~xi !2 (
n51

M

g~yn!2zG2L , ~6!

using the abbreviation̂f (r )&5*dr P(r ) f (r ). The regular-
ization term has been omitted in both measures as its co
bution is limited to the learning dynamics and does not p
any role inmeasuringthe success of the training process.

To solve the dynamics, one straightforwardly derives a
of coupled differential equations@14,15# describing the evo-
lution of the macroscopic variables in the limitN→`,

d

dt
Q5h~V1VT!1h2Z22gQ,

d

dt
R5hW2gR ~7!

and

]

]t
P~r !5

1

aE dx8P~x8,y,z!H)
i

d@xi2xi82hGi~x8,y,z!#

2)
i

d~xi2xi8!J
2(

i

]

]xi
FhE dr 8Gi~r 8!A~r ;r 8!2gxi P~r !G

1
h2

2 (
i ,k

Zik

]2P~r !

]xi]xk
, ~8!

using a matrix representation forQ and R and defining the
matrices

V5^GxT&, W5^GyT&, and Z5^GGT&. ~9!
01191
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This set of equations cannot be closed in general; the d
culties originate in the Green’s function

A~r ;r 8!5 K F E dJ pt~JuQRP!G21E dJ pt~JuQRP!

3d~x2J•j!d~y2B•j!d~z2r!~12djj8!~j•j8!

3d~x82J•j8!d~y82B•j8!d~z82r8!L
J

~10!

where pt(JuQRP) is the weight probability density condi
tioned on the values of the macroscopic observab
$Q,R,P% at time t ~the microscopic measure in macroscop
subshells of the ensemble!, and ^•&J represents averagin
over all realizations of the training set. The Kronecker de
comes to filter out the case in which both vectorsj and j8
are identical (djj851). We follow the derivation of@14# and
employ the dynamical replica theory@16# to close Eqs.~7!
and ~8! by making two key assumptions.

~i! For N→` the macroscopic observables obeyclosed
dynamic equations; we may thus assume equipartitioning
probability ~or maximum entropy! in the macroscopic sub
shells,

pt~JuQRP!;)
i ,k

d@Qik2Qik~J!#)
i ,n

d@Rin2Rin~J!#

3)
r

d@P~r !2P~r uJ!#. ~11!

~ii ! The macroscopic equations are self-averaging with
spect to the specific realization ofD̃; this allows for the
averaging of the macroscopic variables over all training s

Both assumptions can be regarded as good approx
tions in general and will be validated against simulation
sults. They may become exact in some cases~e.g., Hebbian
learning!; we believe the second assumption to be exac
general. Following the calculation of@14# and employing the
replica identity

K E dJW@J,v#G@J,v#

E dJW@J,v#
L

v

5 lim
n→0

E dJ1
•••dJnK G@J1,v# )

a51

n

W@Ja,v#L
v

,

~12!

one obtains, under the further assumption of replica sym
try ~for details see Appendix A and@14#!, a closed form for
Eq. ~8!.
9-3
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]

]t
P~r !5

1

aE dx8 P~x8,y,z!H)
i

d@xi2xi82hGi~x8,y,z!#

2)
i

d~xi2xi8!J 2(
i

]

]xi
@$h@Wy1U~x2Ry!

1X~Q2RRT!F~r !# i2gxi%P~r !#

1
h2

2 (
ik

Zik

]2P~r !

]xi]xk
, ~13!

where we have introduced the matricesB5(Q2q)21L, X
5(V2WRT)(Q2RRT)212U, LLT5q2RRT, and U
5^GFT&, and where

F i~r !5
1

P@xuy,z#
E Dv ^@~Q2q!21~x2x8!# i&* ^d~x

2x8!&* ~14!

using the notation Dv[) i 51
K 1/A2pe2(1/2)v i

2
dv i ~used

throughout the paper! and

^ f ~x,x8!&* 5

E dx8 M ~x8,y,z!ex8TBvf ~x,x8!

E dx8 M ~x8,y,z!ex8TBv
. ~15!

The K3K matrix q and the functionM (x8,y,z) are derived
from the replica symmetric calculation; the former is relat
to the cross-replica overlap matrixQ while the latter is an
effective measure derived from the conjugate variable to
conditional probabilityP(r ). This closed set of equation
can be solved iteratively by calculatingq and M (x8,y,z) at
each step by solving a set of saddle-point equations~for de-
tails see Appendix A and@14#!.

However, obtaining such a solution is extremely expe
sive computationally since a large set of nonlinear sad
point equations should be solved at each time step to ob
a solution to Eqs.~7! and~13!. The computation that was jus
possible in the case of single layer networks would come
a huge computational cost in the case of multilayer netwo
We therefore resort to the largea approximation that was
shown to provide a highly accurate approximated solution
the single layer case even for lowa values ~as low asa
50.5), and enables one to obtain a simple form for Eq.~13!
without solving a set of saddle-point equations at each t
step,

]

]t
P~r !5

1

aE dx8 P~x8,y,z!H)
i

d@xi2xi82hGi~x8,y,z!#

2)
i

d~xi2xi8!J 2(
i

]

]xi
@$hG i~r !2gxi%P~r !#

1
h2

2 (
i ,k

Zik

]2P~r !

]xi]xk
, ~16!

where
01191
e
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G i~ r !5F S V

WD TS Q R

RT TD 21S x

yD 2$^Gx̄T~y,z!2WRT

3~Q2RRT!21$ x̄~y,z!2Ry%# i ,

in which x̄(y,z)5*dx xP@xuy,z#. The largea approximation
is particularly suitable to the model examined here since
main features of learning in multilayer networks, such as
breaking of internal symmetries and the asymptotic conv
gence, can be observed at sensible time scales only for
tively high a values.

To solve the dynamical equations~7! and ~16! numeri-
cally one should represent the continuous probability dis
bution using a discrete model. Representing the probab
distribution by discrete bins, the method used in the sin
layer case, can be employed, in principle, here also to p
vide accurate approximated solutions. However, obtain
solutions in the case of multilayer neural networks comes
a high computational cost, especially as the network s
increases; here one should monitor numerically the evolu
of a general multivariate probability distribution and sol
numerically the differential equations~16! and~7!. Using the
methods used in the single layer case would require m
toring tens of thousands of variables already in the case
K5M52. We therefore look for a parametric approximat
representation of the probability distribution and have co
sidered two different possibilities: a mixture of multivaria
Gaussian distributions~described briefly in Appendix B! and
the local Gaussian approximation~derived in Appendix C!,
where the conditional probabilityP@xuy,z# is replaced by a
Gaussian one withy and z-dependent meanx̄(y,z) and co-
variance matrix$S i j (y,z)%. The first representation can, i
principle, model any given probability distribution to the d
sired accuracy, given a sufficient number of Gaussian ba
and provides simple expressions for Eqs.~7! as most of the
integrals can be carried out analytically; however, the so
tion of Eq. ~16! requires a continuous update of the vario
parameters in the representation used, which can be don
principle but may be computationally difficult due to th
variability in sensitivity of the various parameters. The se
ond representation is more limited and assumes a Gaus
distribution with respect tox for each given (y,z) vector;
however, it can be solved analytically and is therefore ea
to handle as long as the approximation used is satisfact
Here we present solutions based on the second represen

P@xuy,z#5
1

A~2p!KuS~y,z!u

3expH 2
1

2
@x2 x̄~y,z!#TS21~y,z!@x2 x̄~y,z!#J .

~17!

Using the representation~17! in Eq. ~16! results~after some
tedious algebra! in the following dynamical equations fo
x̄(y,z) and forS i j (y,z):
9-4
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FIG. 1. The evolution of the generalization~a! and training errors~b! as a function of time fora51,2,5. Solid lines represent analytica
results while simulation experiments are presented by symbols; both were initialized in a similar manner. Simulation results were
over 20 trials; both mean values and error bars are presented. Theoretical results for the training and generalization errors in the caa55
are presented in~a! and~b!, respectively, for comparison~dashed line!. The insets in~a! and~b! show the evolution of the various overlap
(Q andR, respectively, different symbols represent the various overlaps! in the case ofa55, comparing theoretical results and simulatio
~mean values!. The upperQ lines and symbols correspond to the diagonal values, while the lower lines correspond to the off-di
overlaps.
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dt
x̄i~y,z!5

h

a
Ḡi~y,z!1h@Wy1Y~ x̄$y,z!2Ry%# i ~18!

d

dt
S ik~y,z!5

1

a
@h$V̄ik~y,z!1V̄ki~y,z!2Ḡi~y,z!x̄k~y,z!

2Ḡk~y,z!x̄i~y,z!%1h2Z̄ik~y,z!#

1h@$SS~y,z!% ik1$SS~y,z!%ki#1h2Zik ,

ith the matrices S5(V2WRT)(Q2RRT)21 and
5(V2^Gx̄T&)(Q2RRT)21, and with Ḡi(y,z)
*dx Gi(r )P@xuy,z#, V̄ik(y,z)5*dx Gi(r )xkP@xuy,z#, and

ik(y,z)5*dx Gi(r )Gk(r )P@xuy,z#.
Equations~18! and ~7! are solved numerically from ap

ropriate initial conditions, providing the theoretical predi
ion for the evolution of the macroscopic variables, and b
eneralization@Eq. ~5!# and training errors. The latter take

he expression

Et5
1

2E dy dz P~y,z!E dx P@xuy,z#

3F(
n

g~yn!1z2(
i

g~xi !G2

5
1

2E dy dz P~y,z!F(
ln

g~yl !g~yn!22(
in

g~u i !g~yn!

1(
i j

J2~ i , j !G ~19!

ith u i5 x̄i /A11S i i and
011919
J2~ i , j !5E dx g~AS i i x1 x̄i !gS S i j x1AS i i x̄ j

AS i i ~11S j j !2S i j
2 D .

~20!

III. THE NOISELESS REALIZABLE CASE

Equations~18! and ~7! form the basis to our numerical
solutions in the various learning scenarios. Firstly, we va
date the analysis in the noiseless realizable scenario by co
paring the results to those obtained from numerical simu
tions. In this section we do not consider the case of noise~i.e,
s50) or regularization~i.e., g50).

For brevity we will restrict our experiments in this sectio
to the case ofK5M52 and orthogonal unit teacher vector
Tmn5dmn ~the Kronecker tensor!. To facilitate the compari-
son between the analytical solutions and the simulation
sults we introduce fixed initial conditions, breaking the in
herent symmetries in the system macroscopically. This
essential for investigating the learning dynamics beyond t
symmetric phase as it may take a prohibitively long time
escape the symmetric plateau otherwise, as in the case
infinite training sets@17#. We use the following initial con-
ditions for both theory and simulations:Q11

0 5Q22
0 50.5,

Q12
0 5Q21

0 50, R11
0 50.001, R22

0 5R12
0 5R21

0 50. The initial
joint probability P(r ) is assumed Gaussian, with the corre
sponding parameters. The initial conditions for Eq.~18! are
S(y,z)u t505Q02R0(R0)T and x̄(y,z)u t505R0y; the learn-
ing rate used ish50.5. We first investigate the accuracy o
our approximation in the case of lowa values, where the
accuracy of the approximation is expected to be the wo
due to the~largea) approximation used. However, in thes
cases we cannot observe the breaking of the symmetric ph
for computationally feasible system sizes. We will therefo
concentrate on the prediction accuracy within the symmet
-5
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FIG. 2. The evolution of the training and generalization errors in comparison to those obtained from simulations for the caK
5M52, a520. ~a! The theoretical values for the training~lower! and generalization~higher! errors are represented by the solid lines; t
training error simulation results for system size ofN55000 are represented by symbols~mean values and error bars for 10 trials!. The inset
shows the semilog plot ofEg ~solid and circles! and Et ~dashed and crosses! for t5350, . . . ,500; theoretical results for the decay o
Eg(a5`) are also shown for comparison~dashed dotted line!. The regression values obtained for the various curves areEg(a520)
560.88 exp@22.759(1)31022t# ~theory!, Eg(a520)5151.34 exp@22.9(1)31022t# ~simulations!, Et(a520)5181.08 exp@23.116(1)
31022t# ~theory!, Et(a520)597.65 exp@23.1(1)31022t# ~simulations!, andEg(a5`)5224.51 exp@24.4144(1)31022t#. Digits in pa-
renthesis indicate the regression error in the last digit; regression has been carried out on the mean values.~b! Finite size effects by plotting
simulation results for the generalization error for systems of sizeN51000 ~dashed! andN5500 ~dotted! lines.
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phase, where all vectors of the student system emulate
various vectors in the teacher system with equal succ
Figure 1 shows the numerical solutions of the analyti
equations in comparison to simulation results obtained
variousa values (a51,2,5). The theoretical values are re
resented by solid lines and the simulation results by symb
Simulation results were obtained for a similar system of s
N5500, initialized at random, restricting the overlap valu
to the ones used for the analytical solutions. Simulation
sults were averaged over 20 trials and the figure shows
mean values and error bars for all cases (a51,2,5). Figure
1~a! shows the generalization errors as a functions of tim
with the training error for the case ofa55 added for com-
parison~dashed line!; in all of our experiments, each unit o
time corresponds to the presentation ofaN examples se-
lected at random. Figure 1~b! focuses on the evolution of th
training errors, where the generalization error (a55) is
added for comparison. The insets show the evolution of
various overlaps for the case ofa55 in comparison to the
results obtained from simulations@Q values in Fig. 1~a! and
R values in Fig. 1~b!#. We see that the results obtained are
good agreement with the simulations even at these lowa
values. It is only fair to mention that the discrepancy b
tween the theoretical results and simulations will increas
later times due to the accumulating errors.

However, the main interest of the neural networks co
munity, in the case of multilayer networks, is in the symm
try breaking process whereby specific vectors of the stud
system specialize, each learning to imitate a specific tea
vector. In addition, one would also like to gain insight in
the convergence phase and its dependence on the valuea.
In Fig. 2~a! we show the evolution of both the generalizati
and training errors for the case ofa520, which is suffi-
ciently high for observing the symmetry breaking pheno
ena; the initial conditions and learning rate used are sim
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to those of Fig. 1. The theoretical values for the traini
~lower! and generalization~higher! errors are represented b
the solid lines; the simulation results for system size ofN
55000 are represented by symbols~mean values and erro
bars! and were averaged over 10 trials. In Fig. 2~b! we ex-
amine the finite size effects, comparing the theoretical res
obtained for the generalization error to the simulation res
for N5500, 1000, and 5000. Simulation results for lowerN
values are represented by dashed (N51000) and dotted (N
5500) lines and were averaged over 30 trials. For brev
only mean results are presented for smallerN values; error-
bars are generally similar to those ofN55000.

To examine the decay rate of the training and general
tion errors in the asymptotic regime we plotted in the inset
Fig. 1~a! the decay of both errors on a logarithmic scale w
respect to the number of training iterations fort
5350, . . .,1000; theoretical results for the decay ofEg(a
5`) are also shown for comparison~dashed dotted line!. All
three graphs decay exponentially to their asymptotic val
although the prefactors and the decay rates seem to differ
probably depend ona. The decay rate for the finitea case is
clearly slower than that of thea→` case as expected.

IV. STRUCTURAL UNREALIZABILITY

While interesting academically, realizable training sc
narios are very rare in practical online learning applicatio
We therefore turn to the arguably more interesting case
structural unrealizability, where the number of student v
tors is smaller than that of the teacher vectors. It would
particularly important to examine this case due to the
proximations taken along the way; we should verify the v
lidity of the theoretical results in this case, which may res
in probability distributions quite different from those ob
tained in the realizable scenario. Also in this section we
9-6



ing
,
ting

iagonal
ent
her vectors

hich is not

NOISE, REGULARIZERS, AND UNREALIZABLE . . . PHYSICAL REVIEW E 64 011919
FIG. 3. An unrealizable scenario; a system comprising two student vectorsK52 is trained on examples provided by a system compris
three orthonormal teacher vectorsM53. The initial conditions used areR11

0 50.05, Q11
0 50.4, Q22

0 50.6, with all other overlaps set to zero
the learning rate ish51 and the system size used for simulations isN51000. Simulation results were averaged over 10 trials, presen
both mean values and error bars.~a! The dependence of generalization and training errors on time witha520; the inset shows the
correspondingQ values. Lines represent theoretical values and symbols represent simulation results, upper lines correspond to dQ
values and the lower lines to off-diagonal values. The inset of~b! shows the correspondingR values, the upper curves represent stud
vectors that emulate specific teacher vectors while the lower curves represent cross overlaps between student vectors and teac
emulated by other student vectors; the middle curves represent overlaps between student vectors and the teacher vector, w
emulated by any of the student vectors in particular.~b! The asymptotic (t51000) values of the generalization~dashed line and circles! and
training errors~dotted lines and crosses! for different a values, comparing theoretical~lines! and simulation~symbols! results.
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not consider the case of noise~i.e, s50) or regularization
(g50).

We demonstrate the efficacy of our approach in the c
of a two node system (K52) trained on examples provide
by a three node teacher system (M53), all orthogonal and
of unit length. The equations used are similar to those of
realizable case, Eqs.~18! and ~7!, but with a modifiedM
53 value. The initial conditions used areR11

0 50.05, Q11
0

50.4, Q22
0 50.6, with all other overlaps set to zero; the lear

ing rate ish51, the number of examples isaN, wherea
520, and the system size used in simulations isN51000.
The results presented in Fig. 3~a! show a good agreemen
between theory and simulations and a qualitatively sim
result to the infinite training set case. The insets in Figs. 3~a!
and 3~b! show the correspondingQ andR values.

Figure 3~b! describes the asymptotic values of generali
tion and training errors for differenta values, monitored a
t51000, once the systems had stabilized~notice that the
equilibration of the system att51000 is not guaranteed du
to the spin-glass dynamics!. The learning rate used ish51.
It is easy to see that the agreement between theory and s
lations is generally good but deteriorates asa decreases. It is
difficult to find the exact manner in which both generaliz
tion and training errors decay to their asymptotic values@i.e.,
Eg(a5`)5Et(a5`)# as a function ofa due to its sensi-
tivity to the inherent numerical errors.

V. ADDITIVE OUTPUT NOISE

Finite a training scenarios are of particular interest
cases where the training data is corrupted by some typ
noise, being the most common case in practical training s
narios. This is a particularly important aspect of the curr
study as it enables one to assess existing methods for a
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ating the effect of noise on the model’s generalization p
formance. Similar scenarios have already been examine
the single layer case@18# and discrete learning rules; we wi
focus here on the multilayer case representing a continu
mapping trained by gradient descent.

The equations used are similar to those of the realiza
case, Eqs.~18! and ~7!, except for the reactivation of the
noise term. No regularization is used in the current sect
settingg to zero.

In Fig. 4 we demonstrate the effect of additive outp
noise. We see that the effect is mainly in the length of
symmetric phase and in the convergence to a subopt
asymptotic solution~a constant learning rate ofh51 is
used!. We examine the case ofK5M52, using initial con-
ditions of the form:Qii

0 50.5; Q; iÞ j
0 andRin

0 are set to values
samples uniformlyU@0,1/AN# according to the system siz
N used in simulations. The number of examples used isaN
with a520 and the noise level~standard deviation of the
Gaussian distribution! is s50.2. The system size used i
simulations isN51000. Figure 4~a! shows the evolution of
the generalization~higher! and training errors as a functio
of time, while Fig. 4~b! and the inset show the evolution o
the order parametersQ andR respectively. The upperQ and
R curves correspond to the diagonal overlaps while the lo
curves represent the off-diagonal parameters. We see tha
analysis is in general consistent with results obtained fr
simulations, although inconsistencies occur around the t
sition point between the symmetric and asymptotic regim

Next we examine the efficacy of our approximations
the noise level changes shown in Fig. 5~a!. We plotted the
evolution of the generalization and training~inset! errors as a
function of time, comparing them to simulation results av
aged over 10 trials each. Initial condition, learning rate, a
9-7
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FIG. 4. The effect of additive Gaussian output noise on the evolution of the training and generalization errors and on the mac
variables in the case ofK5M52. The initial conditions used for the student-vector length areQii

050.5; Q; iÞ j
0 andRin

0 are set to values
sampled uniformly in the range@0,1/AN#, corresponding to the system sizeN used in simulations. The learning rate ish51, the examples
ratio isa520 and the noise levels50.2. The system size used in simulations isN51000 and the results were averaged over ten trials e
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the ratio of examplesa are similar to those of the previou
figure. We see that our approximation becomes less accu
as the noise level increases, especially around the breakin
the symmetric phase. This is probably due to the deterio
ing accuracy of the local Gaussian approximation as
noise level increases. For lowa values, when the inheren
system symmetries do not break, our method provide
good approximation to the results obtained in simulations
shown in Fig. 5~b! for the case ofa512. In both cases, the
theoretical asymptotic results are in good agreement with
simulations.

In principle, one could obtain from the analytical sol
tions an estimate to the improvement in performance that
be obtained from employing the early stopping technique
well as an estimate for the optimal point in which early sto
ping should be applied. However, the disagreement betw
the results obtained analytically and the simulations
mainly around the point in which the internal symmetri
break~and mainly at high noise levels!, making such an es
timate inaccurate. We assume that employing a refined
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resentation of the conditional probability distribution wou
enable one to make accurate estimations of this type.

In Fig. 6~a! we examine the dependence of the asympto
values~measured att51000, once the system has stabilize!
of both generalization and training errors on the value ofa,
having a fixed noise levels50.3 ~in the insets50.1). We
see that our approximation provides a good description
largea values, becoming less accurate for low values as
might expect. In addition, we see that as expected, the
between training and generalization errors for a givena in-
creases with the noise level. The dependence of genera
tion error on a for different noise levelss50.1 ~lower
curve! and 0.3~higher curve! is shown in Fig. 6~b!. As ex-
pected, the difference between the asymptotic values
creases asa grows.

One should notice that the asymptotic training and gen
alization errors do not converge~asa increases! to the opti-
mal value ofs2/2; this is due to the fixed learning rate use
rather than the decaying rate required for optimal asympt
results.
The
n

FIG. 5. Additive Gaussian output noise in the case ofK5M52; the learning rate used and the initial conditions are as in Fig. 4.
system used for simulations is of sizeN51000 and results were averaged over ten trials for each point.~a! The dependence of generalizatio
and training~inset! errors on time for different noise levelss50.1,0.2,0.3~from the bottom up! in the case ofa520. ~b! The same for the
case ofa512 ands50.1,0.3,0.5.
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FIG. 6. The asymptotic values of generalization and training errors~measured att51000) for differenta values with a fixed additive
Gaussian output noise level; the case considered, the learning rate used, and the initial conditions are as in Fig. 4. The system
simulations is of sizeN51000 and results were averaged over ten trials for each point.~a! Generalization~higher curve! and training~lower
curve! errors fors50.3, where the dotted line represents the asymptotic value of both training and generalization errors asa becomes
infinite and to which both errors converge. The inset shows for comparison the corresponding generalization~higher curve! and training
~lower curve! errors fors50.1. ~b! The dependence of generalization error ona for different noise levels,s50.1 ~lower curve! and 0.3
~higher curve!. The inset shows the corresponding dependence ofDEg5Eg(a)2Eg(`) on a21 for a values high enough for the system
escape the symmetric phase; the noise levels used ares50.1 ~lower curve! and 0.3~higher curve!.
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To examine the decay of the generalization error to
asymptotic value we plotted in the inset of Fig. 6~b! the
dependence ofDEg5Eg(a)2Eg(`) on a21 for a values
high enough for the system to escape the symmetric ph
The decay seems to be proportional toa21 @e.g., the power
values obtained from regression in the case ofs50.1 are
1.0(1) and 0.9(3) from the theoretical results and simu
tions, respectively# and depends linearly ons2; dividing the
residual error for the noise levels presented in the figurs
50.3 ~higher curve! and s50.1 ~lower curve!, gives ap-
proximately a constant value of 9.

To examine the dependence of both training and gene
zation errors on the noise levels, we plotted in Fig. 7 the
asymptotic values of generalization and training errors~mea-
sured once the system has stabilized! for different additive
Gaussian output noise levels with fixeda520. Using con-
ventional regression methods we find the following dep
dence ofEg and Et on the noise levels: Eg.1.06s2.14(1)

~theory! and Eg.0.94s2.082(8) ~simulations!, and Et
.0.63s1.957(5) ~theory! and Et.0.65s1.968(3) ~simulations!.
This is in agreement with our assumption of a quadratics
dependence.

VI. REGULARIZATION

One of the main problems facing practitioners in the fie
of neural networks is the improvement of generalization a
ity in trained networks, especially when noisy training da
are provided. This is typically done by imposing constrai
on the space of solutions~for a general introduction to the
problem and the methods used see@2#!, reflecting our prior
belief in the type of solution we are looking for. One of th
most common mechanisms for adding such constraints is
introduction of a quadratic regularization term, as in the l
term on the right of Eq.~2!, which leads to a modification o
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the dynamical training equation~1!.
Most of the analyses linking the regularization to t

noise level corrupting the data are based on single layer
tems or on linearizing the system in the asymptotic regim
Ideally, we would have liked to exploit the current analys
to obtain an analytical expression for the optimal regulari
tion term to be used for data corrupted by additive Gauss
noise of a certain variance. However, the current framewo
based on Eqs.~18! and ~7!, is solved numerically making it
difficult to provide the desired link analytically. We therefo
demonstrate the effect of regularization through numer

FIG. 7. The asymptotic values of generalization and train
errors~measured att51000) for different additive Gaussian outpu
noise levelss with a fixeda520; the case considered, the learnin
rate used, and the initial conditions are as in Fig. 4. The system u
for simulations is of sizeN51000 and results were averaged ov
ten trials for each point. Using simple regression techniques we
that the asymptotic values of bothEg andEt depend approximately
on s2 ~for both theory and simulations!. The inset shows the log
log plot of the asymptotic values ofEg andEt versusa.
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FIG. 8. Training with regularizers. The case considered, the learning rate, the system size used for simulation, and the initial c
are as in Fig. 4.~a! The dependence of generalization and training errors versus time for different regularizer (g) values, where generali
zation errors~the upper three! are forg50.01, g50.001,g50.0 from the bottom to the top and training errors~the lower three! are from
the top to the bottom; symbols show the simulation results forg50.01 andg50.0 ~simulations for the case ofg50.001 have been omitted
for brevity!. The noise level used iss50.6 anda512. ~b! The asymptotic values of the generalization error~measured att51000) for
different a values and fixed noise levels50.3. The upper curve represents the case of no regularization while the lower curve isg
50.005. The inset shows the corresponding dependence ofDE5Eg(a)2Eg(`) on a21, where the simulation results are shown by symb
with no error bars for brevity.
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solutions obtained in specific cases.
Firstly, to examine the effect of regularization on both t

training and generalization errors in the symmetric plate
we present the training scenario whereK5M52, a512
and where training examples are corrupted by addi
Gaussian output noise of standard deviations50.6. Simula-
tions were carried out using a system of sizeN51000, and
simulation results were averaged over 10 trials. Figure 8~a!
shows the evolution of the generalization and training err
for different g values, where generalization errors are forg
50.01, g50.001, andg50.0 from the bottom up, while
training errors from the top down. Lines represent the th
retical results while symbols represent simulation results
is clear that while regularization has little effect on the tra
ing error in that phase it clearly reduces the generaliza
error. It should be noted that, although the main significa
of regularization is in the asymptotic regime, its effect on t
symmetric phase is also important as many practical train
sessions are effectively terminated at some suboptimal s
metric plateau.

To examine the effect of regularization asymptotically w
plotted in Fig. 8~b! the dependence of the asymptotic gen
alization error ona, measured att51000 for fixeds50.3
and a regularization value ofg50.005 ~lower curve!; the
upper curve represents values obtained with no regular
tion.

One should note that in the case of infinite training set
has been shown that there is no advantage in using a
dratic regularization term with a constant prefactor in t
asymptotic regime@19#, and in fact, introducing such a term
always results in a higher asymptotic~in training stepst)
generalization error. Therefore, there must be a value oa,
for a given noise level and regularization prefactor, abo
which the introduction of a quadratic regularization term
detrimental to the asymptotic performance. This critic
value of a can be determined, in principle, for a speci
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scenario using our analysis; however, in practice the num
cal inaccuracies reduce the reliability of such a prediction

The inset of Fig. 8~b! shows the dependence ofDEg
5Eg(a)2Eg(`) on a21, for sufficiently largea such that
the system escapes the symmetric plateaus. The theore
results are in agreement with the simulations, indicating~ap-
proximately! a 1/a decay in the generalization error to th
asymptotic values~the regression power figures obtained n
merically from both theory and simulations are genera
around the decay power of 1, but have significant error ba!.

VII. DISCUSSION

We presented a theoretical framework for the analysis
online learning scenarios in multilayer networks, where
training examples are sampled with repetition from a fix
example set. The framework, being based on rather s
theoretical tools, provides a controlled and unbiased desc
tion of the learning dynamics. It is then used for studyi
realizable and unrealizable scenarios as well as scena
whereby the data is corrupted by additive Gaussian ou
noise and where regularizers are employed for improving
network’s generalization performance.

To obtain the set of equations representing the netw
dynamics we employ the dynamical replica method. This
the only fundamentalapproximation used in this analysis
comprising three assumptions:~a! Equipartitioning of the
probability ~or maximum entropy! in the macroscopic sub
shells asN→`, ~b! The macroscopic equations are se
averaging with respect to the specific realization of the da
~c! The replica symmetry ansatz. These assumptions ca
regarded as good approximations in general and may bec
exact in some cases. On the basis of simulation results
believe the self-averaging assumption to hold in gene
while the equipartitioning and the replica symmetry assum
tions may break down in extreme cases such as very lowa
9-10
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NOISE, REGULARIZERS, AND UNREALIZABLE . . . PHYSICAL REVIEW E 64 011919
values~lower than 1!, high over-realizability etc., when th
error surface becomes rugged or suffers from multi
minima.

Employing the dynamical replica theory one obtains E
~7! and ~13!, which are the main result of the analysis a
provide a closed set of equations that could be solved at h
computational cost.

To be able to produce results in many different scena
and under different training conditions we employed two f
ther approximations. These are considered merely for sim
fying the numerics and should not be regarded as esse
ingredients of the calculation. They have both been e
ployed because they provide a reliable approximation in
relevant parameter range and would have been aband
otherwise. The first of the two is the higha approximation.
This has been shown to provide an excellent approxima
even for very lowa values@14# and is therefore expected t
be highly accurate in the cases we concentrate on here
most of the interesting phenomena in training multilayer n
works appear only whena is sufficiently high ~e.g., the
breaking of suboptimal symmetric solutions and t
asymptotic convergence!. This approximation is likely to
break down only for very lowa ~lower than 1!, which is
outside of the relevant range of the current study.

The second approximation used is the method emplo
to model the conditional probability distribution of th
teacher and student local fields,P@xuy#; such a model is
essential for obtaining numerical solutions to continuo
functions in general and may take various forms~e.g., dis-
crete bins, a mixture of Gaussians, etc.!. In the current analy-
sis we employed the local Gaussian representation to fa
tate the computation as it has been shown to provide a g
approximation already for lowa values@14#. Also here, the
approximation may break down for lowa values, specific
training rules, high over-realizability, etc., where the fie
distribution becomes more complex. Of all the approxim
tions used, this is likely to be the most fragile and it may
therefore desirable, in some cases, to replace it by a m
accurate model such as the mixture of Gaussians we
posed in Appendix B.

The results obtained are in good agreement with the si
lations and support heuristic methods used by practition
such as early stopping and regularization. The framew
successfully provides a description of the dynamics of b
training and generalization errors~and of the various over
laps!, some understanding of the link between the value oa
and the breaking of internal symmetries, certain asympt
scaling laws, etc. Unfortunately, due to the complexity
dynamical equations and the computational difficulties
have experienced in solving them, our ability to provide a
lytical solutions is limited. These are highly desirable f
deriving analytical relations between the training and gen
alization conditions in noisy scenarios, in both the symme
phase and asymptotically, and to make a quantitative
between the noise level and the optimal regularization to
used.

Other questions that are of interest are to do with
length of the symmetric phase and its dependence on
ratio a, the learning rate, the architecture chosen, and
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initial conditions. In addition, it would be desirable to defin
optimal training parameters and learning rules in a princip
manner, similarly to the studies carried out in the case
infinite training sets@20–24#.

It is fair to say that it is difficult to see how these obje
tives could be achieved in the current framework; furth
simplifications may be required for successful exploitation
the analysis. Nevertheless, the current paper prepares th
sis for future studies in this area.
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APPENDIX A: REPLICA CALCULATION
OF THE GREEN FUNCTION

The main objective of this appendix is to provide a rou
derivation of the Green’s functionA@ . . . # using the dy-
namic replica theory and following@14# and @15#, from
which we obtain the macroscopic dynamical equations~13!
in an explicit form. We first carry out the disorder averag
leading to an effective single-spin problem. The integratio
are carried out using saddle-point methods for the replica
order parameters at each time step employing the rep
symmetry~RS! ansatz.

1. Disorder averaging

Following the dynamic replica theory in@16#, we write
the Green function as

A~r ;r 8!5 lim
n→0

lim
N→`

K K E )
ia

dJi
a pt(J

auQRP)

3)
i

d~xi2Ji
1
•j!)

n
d~yn2Bn•j!d~z2r!

3~j•j8!~12djj8!)
i

d~xi82Ji
1
•j8!

3)
n

d~yn82Bn•j8!d~z82r8!L
D̃D̃8

L
J

, ~A1!

noting that the averages over the data sets already includ
noise distribution as well, and that^•&J represents averagin
over all realizations of the data set. Using the definition
P(r ;J) and the integral representations for thed distributions
involving P(r ), we obtain
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A~r ;r 8!5 lim
n→0

lim
N→`

E )
a,r9

dP̂a~r 9!)
a i

dJi
a

3)
a ik

d~Qik2Ji
a
•Jk

a!)
a in

d~Rin2Ji
a
•Bn!

3eiN*dr9 P̂(r9)Pt(r9)E dr̂ dr̂ 8

~2p!2(K1M11)
ei r̂•r

3K 1

p2 (
mÞn

~jm
•jn!

3expF2
i

a (
al

P̂~Ja
•jl,B•jl,rl!G

3expF2 i(
i

x̂iJi
1
•jm2 i(

n
ŷnBn•jm2 i ẑrm

2 i(
i

x̂i8Ji
1
•jn2 i(

n
ŷn8Bn•jn2 i ẑ8rnG L

J

~A2!

with the conjugate functionP̂(r ).
We first define some relevant functions to facilitate t

calculation

D~ r̂ ;j,r!5expF2
i

a (
a

P̂~Ja
•j,B•j,r!2 i(

i
x̂iJi

1
•j

2 i(
n

ŷnBn•j2 i ẑrG ,
D~ r̂ !5^D~ r̂ ;j,r!&D̃ ,

Ej~ r̂ !5^j jD~ r̂ ;j,r!&D̃5K ]D~ r̂ ;j,r!

]j j
L

D̃

. ~A3!

By using the permutation invariance of the integrations a
summations with the pattern labels, we evaluate the train
set average of the expression forA@ . . . # in Eq. ~A2! in the
thermodynamic limit

K 1

p2 (
mÞn

~jm
•jm!e•••L

J

5 K p21

p
~j1

•j2!e•••L
J

5
p21

p (
j

N K expF2
i

a (
a

P̂~Ja
•j,B•j,r!G L

D̃

p22

3K expF2
i

a (
a

P̂~Ja
•j,B•j,r!2 i(

i
x̂iJi

1
•j
01191
d
g-

2 i(
n

ŷnBn•j2 i ẑrG L
D̃

3K expF2
i

a (
a

P̂~Ja
•j,B•j,r!2 i(

i
x̂i8Ji

1
•j

2 i(
n

ŷn8Bn•j2 i ẑ8rG L
D̃

5exp$p ln@D~0,0!#%
L~ r̂ ; r̂ 8!

D 2~0!
~A4!

with L( r̂ ; r̂ 8)5( j
NEj ( r̂ )Ej ( r̂ 8). We can then write the Gree

function in an integral form dominated by saddle points,

A~r ;r 8!5E dr̂dr̂ 8

~2p!2(K1M11)
exp@ i ~ r̂•r1 r̂ 8•r 8!#

3 lim
n→0

lim
N→`

E dq dQ dq̂ dQ̂ dR̂E )
a,r9

dP̂a~r 9!

3exp~NC@q,Q,q̂,Q̂,R̂,$P̂%#!
L~ r̂ ; r̂ 8!

D 2~0!
~A5!

with

C@ . . . #5
1

2 F(
a

Tr~Q̂aQa!22i(
a

~Tr R̂aRa!

1(
ab

Tr~ q̂abqab!G1 i(
a

E dr P̂a~r !P~r !

1a ln D~0!1 lim
N→`

1

N
lnE )

a i
dJi

a

3expS 2
1

2 F(
a ik

Q̂ik
a Ji

a
•Jk

a22i(
a in

R̂in
a Ji

a
•Bn

1 (
ab ik

q̂ik
abJi

a
•Jk

bG D . ~A6!

Similarly, the joint probability distribution can be obtained

P~r !5E dr̂

~2p!K1M11
ei r̂•r

3 lim
n→0

lim
N→`

E dq dQ dq̂ dQ̂ dR̂E )
a,r9

dP̂a~r 9!

3exp~NC@q,Q,q̂,Q̂,R̂,$P̂%#!
D~ r̂ !

D~0!
. ~A7!

Using the normalized expression forP(r ) we see that no
overall prefactors in the expression ofA@r ;r 8# or P(r ) are to
be taken into account. Then we have

A~r ;r 8!5E dr̂ dr̂ 8

~2p!2(K1M11)
exp@ i ~ r̂•r1 r̂ 8•r 8!#

L~ r̂ ; r̂ 8!

D 2~0!
,

~A8!
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with the order parameter values defined at the saddle p
and

P~r !5E dr̂

~2p!K1M11
ei r̂•r

D~ r̂ !

D~0!
. ~A9!

First, we calculate the explicit expression forD(0).

D~0!5E )
a i

dx̂i
a dxi

a

2p )
n

dŷn dyn

2p

dẑdz

2p
expF i(

a i
x̂i

axi
a

1 i(
n

ŷnyn1 i ẑz2
i

a (
a

P̂~xa,y,z!G
3E DjE D~r/s!expF2 i(

j

N S (
a i

x̂i
aJi j

a

1(
n

ŷnBn j D j j2 i ẑrG
5E )

a i

dx̂i
a dxi

a

2p )
n

dŷn dyn

2p
D~z/s!expF i(

a i
x̂i

axi
a

1 i(
n

ŷnyn2
i

a (
a

P̂~xa,y,z!G
3expS 2

1

2 F (
ab ik

qik
abx̂i

ax̂k
b

12(
a in

Rinx̂i
aŷn1(

n
ŷn

2G D , ~A10!

where Dv is the Gaussian measure as defined before,
where the spin-glass order parameters and the overlapsRin

a

between the student and teacher weights are defined as

qik
ab5Ji

a
•Jk

b , Rin
a 5Ji

a
•Bn . ~A11!

We now employ the RS ansatz:qik
ab5$Qik(a5b),qik(a

Þb)%, Rin
a 5Rin , andP̂a(r )5 ix(r ). ThenD(0) can be fur-

ther simplified

D~0!5E )
a i

dx̂i
a dxi

a

2p
)

n

dŷn dyn

2p
D~z/s!expF i(

a i
x̂i

axi
a

1 i(
n

ŷnyn1
1

a
(
a

x~xa,y,z!G
3expH 2

1

2 F(
a ik

~Qik2qik!x̂i
ax̂k

a

1(
ik

qikS (
a

x̂i
aD S (

a
x̂k

aD 12(
a in

Rinx̂i
aŷn

1(
n

ŷn
2G J
01191
nt,

nd

5E )
a i

dx̂i
a dxi

a

2p
)

n

dyn

A2p
D~z/s!

3expH i(
a i

x̂i
a@xi

a2~Ry! i #1
1

a
(
a

x~xa,y,z!J
3expH 2

1

2 F(
a ik

x̂i
a~Q2q! ikx̂k

a

1(
ik

S (
a

x̂i
aD ~q2RRT! ikS (

a
x̂k

aD 1(
n

yn
2G J

5
1

Auq2RRTu
E Dy D~z/s!E )

i

dv i

A2p

3expF2
1

2
vT~q2RRT!21vG E )

a i

dx̂i
a dxi

a

2p

3expH 2
1

2
(
a ik

x̂i
a~Q2q! ikx̂k

a

1 i(
a i

x̂i
a@xi

a1ui2~Ry! i #1
1

a
(
a

x~xa,y,z!J
5

1

Auq2RRTu
E DyD~z/s!E )

i

dv i

A2p

3expF2
1

2
vT~q2RRT!21vG

3F 1

AuQ2qu
E )

i

dxi

A2p
expH 1

a
x~r !

2
1

2
~x2Ry2v!T~Q2q!21~x2Ry2v!J G n

5E Dy D~z/s!E Dv F E dx V~r ;v!Gn

~A12!

with

V~r ;v!5
1

AuQ2qu~2p!K
expF 1

a
x~r !2

1

2
~x2Ry2Lv!T

3~Q2q!21~x2Ry2Lv!G , ~A13!

LLT5q2RRT, andB5(Q2q)21L.
Second, the integration onJi

a can be carried out and th
corresponding expression can be evaluated explicitly us
the RS ansatz~in the limit n→0)
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lim
N→`

1

N
lnE )

a i
dJi

a expS 2
1

2 F(
a ik

Q̂ik
a Ji

a
•Ji

a

22i(
a in

R̂in
a Ji

a
•Bn1 (

ab ik
q̂ik

abJi
a
•Jk

bG D
;2

1

2
$~n21!lnuQ̂2q̂u1 lnuQ̂1~n21!q̂u

1n Tr@R̂T~Q̂2q̂!21R̂#1O~n2!%. ~A14!

Together with the rest of the terms inC@ . . . #, we have

lim
n→0

C

n
5

1

2
$Tr~Q̂Q!22i Tr~R̂R!2Tr~ q̂q!2 lnuQ̂2q̂u

2Tr@~Q̂2q̂!21q̂#2Tr@R̂T~Q̂2q̂!21R̂#%

2E dr x~r !P~r !

1aE Dy D~z/s!E Dv lnF E dx V~r ;v!G .
~A15!

2. Derivation of the RS saddle-point equations

We then work out the saddle-point equations with resp
to Q̂,R̂,q̂

r̂ 5Q̂2q̂5~Q2q!21, R̂52 i ~Q2q!21R,

q̂52~Q2q!21~q2RRT!~Q2q!21, ~A16!

which allow us to eliminate most variational paramete
Then theC can be simplified as

C5
1

2
Tr@~Q2RRT!~Q2q!21#1

1

2
lnuQ2qu

2E dr x~r !P~r !

1aE Dy D~z/s!E Dv lnF E dx V~x,y,z;v!G .
~A17!

The saddle-point equation forx(r ) results in

P~r !5
e2(1/2)y2

A~2p!M

e2z2/2s2

A2ps
E DvF V~r ;v!

E dx8 V~x8,y,z;v!G
[P~y,z!P@xuy,z# ~A18!

where we have definedP(y,z) and conditional probability
P@xuy,z#, respectively, as
01191
ct

.

P~y,z!5
e2(1/2)y2

A~2p!M

e2z2/2s2

A2ps
,

P@xuy,z#5E Dv F M ~r !exTBv

E dx8 M ~x8,y,z!ex8TBvG ~A19!

with

M ~r !5expF 1

a
x~r !2

1

2
~x2Ry!T~Q2q!21~x2Ry!G .

~A20!

3. Explicit expression for the Green function

In order to work out the explicit expression for the Gre
function ~A8! we need to calculate the functionL( r̂ ; r̂ 8).
First we take then→0 limit of D( r̂ ,j,r) @Eq. ~A3!# and
simplify the result using the saddle-point equation~A18!

D~ r̂ ,j,r!5 lim
n→0

E Dy D~z/s!E Dv F E dx V~r ;v!e2 i r̂•r G
3F E dx V~r ;v!Gn21

5E Dy D~z/s!E Dv F E dx V~r ;v!e2 i r̂•r

E dx V~r ;v!
G

5E dr P~r !e2 i r̂•r. ~A21!

Next we evaluate theEj ( r̂ ) by working out the partial deriva-
tive on j j and separating the summation over replica indic
into two groups:a51 anda.1,

Ej~ r̂ !5K F 1

a (
a i

]a ix
aJi j

a 1
1

a (
an

]anxaBn j2(
i

i x̂ iJi j
1

2(
n

i ŷnBn jGD~ r̂ ,j,r!L
D̃

5F(
i

F̂i~ r̂ !Ji j
1 1(

n
F̂n~ r̂ !Bn j1 (

i ,a.1
K̂i~ r̂ !Ji j

a

1 (
n,a.1

K̂n~ r̂ !Bn jG , ~A22!

where the RS ansatz is used,

F̂l
a~ r̂ !5da1F̂l~ r̂ !1~12da1!K̂l~ r̂ !, ~A23!

with
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F̂l~ r̂ !5
1

a
^@]1,lx

(1)~r !#D~ r̂ ,j,r!&D̃2 i x̂ lD~ r̂ !,

K̂l~ r̂ !5
1

a
^@]2,lx

(2)~r !#D~ r̂ ;j,r!&D̃, ~A24!

and the indexl runs through all student and teacher indic
We expressL( r̂ ; r̂ 8) in terms of Eq.~A22!, performing the
summation over the replica indices and taking the limit
n→0. We then obtain

L~ r̂ ; r̂ 8!5(
ik

@F̂iF̂k82K̂iK̂k8#~Qik2qik!

1(
ik

~F̂i2K̂i !~F̂k82K̂k8!qik

1(
in

@~F̂i2K̂i !~F̂n82K̂n8!

1~F̂i82K̂i8!~F̂n2K̂n!#Rin

1(
n

~F̂n2K̂n!~F̂n82K̂n8!. ~A25!

The Green function becomes

A~r ;r 8!5(
ik

@FiFk82KiKk8#~Qik2qik!

1(
ik

~Fi2Ki !~Fk82Kk8!qik

1(
in

@~Fi2Ki !~Fn82Kn8!

1~Fi82Ki8!~Fn2Kn!#Rin

1(
n

~Fn2Kn!~Fn82Kn8!, ~A26!

using the inverse Fourier transforms ofF̂l( r̂ ) andK̂l( r̂ )

Fl~r !5E dr

~2p!K1M11
F̂l~ r̂ !ei r̂•r, ~A27!

Kl~r !5E dr

~2p!K1M11
K̂l~ r̂ !ei r̂•r. ~A28!

Making use of the saddle-point equation forx(r ), Eq.
~A18!, and the expression forD( r̂ ,j,r), Eq. ~A21!, we can
work out the explicit expressions of the functionsFl(r ) and
Kl(r ),
01191
.

f

Fl~r !5
1

a
P~r !@] lx~r !#2@] l P~r !#, ~A29!

Kl~r !5
1

a
P~y,z!E Dv F V~r ;v!

E dx8 V~x8,y,z;v!G
3F E dx8 V~x8,y,z;v!@] lx~r !#

E dx8 V~x8,y,z;v!
G . ~A30!

Separating the indexl to the student~labeled by i ) and
teacher~labeled byn) indices, we obtain four different func
tions

Fi~r !5@~Q2q!21~x2Ry!# i P~r !1@] i ln M ~r !#P~r !

2] i P~r !

Fn~r !52@RT~Q2q!21~x2Ry!#nP~r !1@]n ln M ~r !#P~r !

2]nP~r !

52@RT~Q2q!21~x2Ry!#nP~r !1ynP~r !

1P~y,z!E Dv F M ~r !exTBv

E dx8 M ~x8,y,z!ex8TBvG
3H E dx8@]nM ~x8,y,z!#ex8TBv

E dx8 M ~x8,y,z!ex8TBv J , ~A31!

Ki~r !52@~Q2q!21Ry# i P~r !2] i P~r !1@] i ln M ~r !#P~r !

1P~y,z!E Dv F M ~r !exTBv

E dx8 M ~x8,y,z!ex8TBvG
3H E dx8@~Q2q!21x8# iM ~x8,y,z!ex8TBv

E dx8 M ~x8,y,z!ex8TBv J ,

Kn~r !5@RT~Q2q!21Ry#nP~r !

2P~y,z!E Dv F M ~r !exTBv

E dx8 M ~x8,y,z!ex8TBvG
3H E dx8@RT~Q2q!21x8#nM ~x8,y,z!ex8TBv

E dx8 M ~x8,y,z!ex8TBv J
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1P~y,z!E Dv F MexTBv

E dx8 M ~x8,y,z!ex8TBvG
3H E dx8@]nM ~x8,y,z!#ex8TBv

E dx8 M ~x8,y,z!ex8TBv J . ~A32!

Rescaling the above functions byP(r ): F̃l(r )
5Fl(r )/P(r ) andK̃l(r )5Kl(r )/P(r ), and defining the func-
tion

F i~r !5F̃i~r !2K̃i~r !

5
1

P@xuy,z#
E Dv^@~Q2q!21~x2x8!# i&*

3^d~x2x8!&* , ~A33!

with the abbreviation

^ f ~x,x8!&* 5

E dx8 M ~x8,y,z!ex8TBvf ~x,x8!

E dx8 M ~x8,y,z!ex8TBv
, ~A34!

we obtain the following compact forms forF̃(r ) andK̃(r )

F̃i~r !5@~Q2q!21~x2Ry!# i

2@~Q2q!21~q2RRT!F~r !# i ,

K̃i~r !5F̃i~r !2F i~r !,

F̃n~r !2K̃n~r !5yn2@RTF~r !#n . ~A35!

Inserting Eqs.~A33! and ~A35! into Eq. ~A26!, we finally
obtain the rescaled Green function

Ã~r ;r 8!5
A~r ;r 8!

P~r !P~r 8!

5yTy81~x2Ry!TF~r 8!1FT~r !~x82Ry8!

2FT~r !~Q2RRT!F~r 8! ~A36!

with F(r ) given in Eq.~A33!. Working out the integration

E dr 8 A~r ;r 8!G~r 8!5P~r !E dr 8 P~r 8!G~r 8!Ã~r ;r 8!

5P~r !G~r ! ~A37!

with

G~r !5Wy1U~x2Ry!1X~Q2RRT!F~r ! ~A38!

and
01191
X5~V2WRT!~Q2RRT!212U, U5^GFT&,
~A39!

we finally obtain the equation for probability distribution un
der RS ansatz, which is Eq.~13!.

4. The large a approximation

In the largea limit, the order parameter matrixq takes the
valueRRT and the elements of matrixB are very small. We
can therefore use the cumulant expansion up to the sec
order to obtain

M ~r !5P@xuy,z#expH 2
1

2
@x2 x̄~y,z!#TB8@x2 x̄~y,z!#

1
1

2
@ xTB8x̄2 x̄T~y,z!B8x̄~y,z!#J 1•••, ~A40!

the overline denotes averages with respect toP@xuy,z# and
the matrix B8 is of the form B85(Q2q)21(q2RRT)(Q
2q)21. Furthermore, we have (Q2q).(Q2RRT), the
function F(r ) in Eq. ~A33! and the matrixU in Eq. ~A39!
become

F~r !.~Q2RRT!21~x2 x̄!,

U5@V2^Gx̄T~y,z!&#~Q2RRT!21. ~A41!

Finally, the dynamical equation for the probability distrib
tion in Eq. ~13! becomes equivalent to Eq.~16! with the
explicit form of G(r ).

APPENDIX B: THE MIXTURE OF GAUSSIAN
REPRESENTATION

A mixture of Gaussians can represent an arbitrary pr
ability distribution given a sufficient number of basis fun
tions. Using a mixture of Gaussian representations for
probability distribution~in the noiseless case!

Q~x,y!5 (
r51

L
wr

A~2p!K1MuAru

3expF2
1

2 S x2 x̄r

y D T

Ar
21S x2 x̄r

y D G ~B1!

and the parameter setu5@wr ,x̄r ,Ar#, from which the equa-
tions for R andQ follow directly,

dRin

dt
5h(

r
wrF(

m
I 3

r~ i ,n,m!2(
j

I 3
r~ i ,n, j !G2gRin

~B2!

and
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dQik

dt
5h(

r
wrH(

m
@ I 3

r~ i ,k,m!1I 3
r~k,i ,m!#

2(
j

@ I 3
r~ i ,k, j !1I 3

r~k,i , j !#J 1h2(
r

wrZik
r

22gQik , ~B3!

where

Zik
r 5(

j l
I 4~ i ,k, j ,l !22(

jm
J4~ i ,k, j ,m!1(

mn
K4~ i ,k,m,n!.

The integralsI 3 , I 4 , J4, andK4 are defined in Appendix C
The difficulty is in obtaining a set of equations for th

evolution of the parameter setu. This can be done in prin
ciple by minimizing some distance measure between the
dated distributionP(x,y) and the approximationQ(x,y). We
experienced computational difficulties in carrying it out u
ing a quadratic distance measure mainly due to the diffe
sensitivities of the various parameters. Nevertheless, b
capable of representing any probability distribution, we b
lieve that this representation may allow one to obtain m
accurate results where the local Gaussian approxima
breaks down.

APPENDIX C: LOCAL GAUSSIAN REPRESENTATION
FOR THE CASE OF OUTPUT NOISE AND

REGULARIZER

For a locally Gaussian approximation, the condition
probability has a form

P@xuy,z#5
1

A~2p!KuS~y,z!u

3expH 2
1

2
@x2 x̄~y,z!#TS21~y,z!@x2 x̄~y,z!#J .

~C1!

The main advantages of this approximation are that the i
gration over the student fieldx can be carried out analyticall
and the partial differential equation forP(r ) in Eq. ~16! can
be simplified to a set of differential equations for the para
etersS(y,z),x̄(y,z) as described in Eq.~18!.

1. The equations for the parametersQ and R

Under this approximation, the equations for the mac
scopic parametersQ andR in Eqs.~7! become

dR

dt
5hE dy dz P~y,z!W̄~y,z!2gR,

dQ

dt
5hE dy dz P~y,z!@V̄~y,z!1V̄T~y,z!#

1h2E dy dz P~y,z!Z̄~y,z!22gQ ~C2!
01191
p-

-
nt
ng
-
e
n

l

e-

-

-

with

V̄ik~y,z!5(
l

I 3~ i ,k,l !2(
j

J3~ i ,k, j !,

W̄in~y,z!5(
l

K3~ i ,n,l !2(
j

L3~ i ,n, j !,

Z̄ik~y,z!5(
j l

I 4~ i ,k, j ,l !22(
jm

J4~ i ,k, j ,m!

1(
mn

K4~ i ,k,m,n! ~C3!

where the integrals on the right-hand side depend ony andz
throughS(y,z) and x̄(y,z).

2. Three-dimensional integrals

The three-dimensional integrals in Eq.~C3! are given by

I 3~1,2,3!5A2

p
^e2(1/2)x1

2
x2g~y3!&5I 1G12g~y3!,

J3~1,2,3!5A2

p
^e2(1/2)x1

2
x2g~x3!&5I 1FG12g~Q13!

1A2

p
Dce

2(1/2)Q13
2 G ,

K3~1,2,3!5A2

p
^e2(1/2)x1

2
y2g~y3!&5I 1y2g~y3!,

L3~1,2,3!5A2

p
^e2(1/2)x1

2
y2g~x3!&5I 1y2g~Q13!,

~C4!

with ^ . . . &5*dx P@xuy,z# . . . and

I i5A2

p
^e2(1/2)xi

2
&5A2

p

1

Af i

e2(1/2)(x̄i
2/f i ), ~C5!

Q135~ x̄3f12 x̄1S13!f13, Dc5~f1S232S13S12!f13,

f i511S i i , f1351/Af1~f1f32S13
2 !,

G125 x̄22S12x̄1 /f1 .

3. Four-dimensional integrals

The four-dimensional integrals in Eq.~C3! are given by

I 4~1,2,3,4!5
2

p
^e2(1/2)x1

2
2(1/2)x2

2
g~y3!g~y4!&

5I 2~1,2!g~y3!g~y4!,
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J4~1,2,3,4!5
2

p
^e2(1/2)x1

2
2(1/2)x2

2
g~x3!g~y4!&

5I 2~1,2!g~Q123!g~y4!,

K4~1,2,3,4!5
2

p
^e2(1/2)x1

2
2(1/2)x2

2
g~x3!g~x4!&,

5I 2~1,2!E Dx g~AD11x1Q3!

3gS D12x1AD11Q4

AuDu
D , ~C6!

where the two-dimensional integral is defined as

I 2~1,2!5 K 2

p
e2(1/2)x1

2
2(1/2)x2

2L
5

2

p

1

AuCu
expF2

1

2 S x̄1

x̄2
D T

C21S x̄1

x̄2
D G , ~C7!

with the matrix
rd

01191
C5S f1 S12

S12 f2
D

and the arguments are defined as

S Q3

Q4
D 5F x̄32~ x̄1D111 x̄2D21!

x̄42~ x̄1D121 x̄2D22!
G ,

Q1235
x̄32~ x̄1T11 x̄2T2!

Af32~T1S131T2S23!
with S T1

T2
D 5C21S S13

S23
D ,

and

D5S S332E11, S342E12

S342E21, f42E22
D ,

E5S S13D111S23D21, S13D121S23D22

S14D111S24D21, S14D121S24D22
D ,

D5
1

uCu S f2S132S12S23, f2S142S12S24

f1S232S12S13, f1S242S12S14
D . ~C8!
.
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