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Noise, regularizers, and unrealizable scenarios in online learning from restricted training sets
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We study the dynamics of online learning in multilayer neural networks where training examples are
sampled with repetition and where the number of examples scales with the number of network weights. The
analysis is carried out using the dynamical replica method aimed at obtaining a closed set of coupled equations
for a set of macroscopic variables from which both training and generalization errors can be calculated. We
focus on scenarios whereby training examples are corrupted by additive Gaussian output noise and regularizers
are introduced to improve the network performance. The dependence of the dynamics on the noise level, with
and without regularizers, is examined, as well as that of the asymptotic values obtained for both training and
generalization errors. We also demonstrate the ability of the method to approximate the learning dynamics in
structurally unrealizable scenarios. The theoretical results show good agreement with those obtained from
computer simulations.
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[. INTRODUCTION ful effects in neural network training, such as overfitting, to
which the above theory is oblivious.

Artificial neural networks provide an important tool for A more realistic scenario is that where the number of
tackling nonlinear problems complementary to existing statraining examples scales with the number of free parameters
tistical methodgfor review sed1,2]). The optimal selection and the examples are sampled with repetition. This gives rise
of the network parameters on the basis of examples is termedd correlations between the network parameters and the train-
learning and may be carried out in a variety of methods andihg examples, which clearly affect the learning process. One
techniques. The efficiency and success of the training proef the most significant aspects of having a fixed example set
cess are in the heart of the method itself and play a signifiis the distinction between the two key performance mea-
cant part in determining the usefulness of artificial neuralsures: thetraining error measuring network performance
networks as a whole. with respect to the restricted training set, and st (gen-

Significant effort has been invested over the years in operalization) error calculated for all possible inputs sampled
timizing the training methods as well as the choice of train-from the true distribution. The former may be monitored in
ing parameters and regularization methods. These have bepractical training scenarios, while the lattghe minimiza-
successfully used in practice, although most of the trainindion of which is the true aim of the learning processn
methods used as well as the setting of the training coeffionly be assessed up to some confidence level.
cients are based on heuristic observations. The analyses of learning from fixed example sets intro-

One of the most powerful and commonly used approacheduced so faf9—13] have mostly considered single layer sys-
to training large layered networks is that of online learningtems, focusing on specifizisually simplg¢ learning rules. In
of continuous functions via gradient descent. Online learningddition, most of these studies have been restricted to batch
refers to the iterative modification of the network parameterdearning, where the network parameters are modified only
according to a predetermined training rule following succesafter the complete example set has been presented.
sive presentations of single training examples, each repre- The current paper builds upon a new approach we re-
senting a specific input vector and the corresponding outputently presented for the case of single layer netwdili4,

This approach has been widely and successfully used fdsased on the dynamical replica method, which enables one to
training large network§3] and is arguably the most efficient analyze a broad range of training rules and network configu-
technique for these tasks. rations that can treat both online and batch learning sce-

Significant progress has been made in analyzing the dyaarios. Preliminary analysis of noiseless, realizable, and un-
namics of supervised online learning in multilayer networksrealizable learning scenarios in multilayer networks were
via methods of statistical physigseviews can be found in briefly described if15]. Here, we extend the analysis to the
[4,5]). Most of the analysege.g.,[6—8]) concentrate on the case where training examples are corrupted by additive
case of infinite training sets, where training examples aré&aussian output noise and examine the effect of regulariza-
sampled without repetition and in which there is no correla-tion on the training dynamics. We also study the dependence
tion between the network parameters and the examples pref the asymptotic training and generalization errors on the
sented at each training step. They successfully explain thsize of the example set provided, with and without regular-
various training phases and the emergence of generalizatianation. For brevity we will restrict the analysis to the case of
abilities but lack a vital aspect of the learning process, whiclonline learning and not consider here the case of batch learn-
may seem insignificant at first sight, assuming that the training at all.
ing set is large. However, the emerging correlations between The paper is organized as follows. Section Il provides the
successive training steps give rise to some of the most harngeneral framework and the theoretical basis for the analysis.
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In Sec. lll we present results obtained for the noiseless reakimple quadratic regularization term parametrized fy
izable case, followed by results obtained for an unrealizableommonly used in regression tasks where examples are cor-
training scenario where the model network is incapable ofupted by noise, the usefulness of which will be examined in
realizing the underlying rule due to structural limitations in the current study. Here we concentrate on the most common
Sec. IV. Section V looks at cases where training examplesnline learning scenario for regression tasks, where the func-
are corrupted by output Gaussian noise, while Sec. VI examtion G together with the last term in Eql) is the gradient
ines the impact of regularization on the network perfor-with respect to the parametelsof the quadratic error mea-
mance. We summarize our results and discuss the advantagage (per examplg

and drawbacks of the current analysis in Sec. VII.

1 198
IIl. THE FRAMEWORK E9=35l00.H- 1 +3 P 2 33

We concentrate on information processing tasks in the 1[ K M 2
form of maps from amN-dimensional input spacge RN onto =§{2 g(x)— > 9(yn) — z}
a scalar{eR, realized through a parametrized function =1 n=1
a(J,8) =EiKzlg(Ji - ). This function can be viewed as a two 1
layer neural network, wherg is the activation function of + =
the hidden units taken here to be the error functigmi) 2
=erf(x/\2); J={J}1=i=x is the set of input-to-hidden _ __
adaptive weights for th& hidden nodes, and the hidden-to- 21d G is of the explicit form
output weights are set to 1. The activation of hidden niode
under presentation of the input patte&t is denotedx!

K
Y
;2 33, )

LM‘

K
2
Gi(Xj=1 .. k+Yn=1...M:2) —e(llz)xiLzl a(x;)

=J;- €. This general configuration, usually referred to as ™
the “soft committee machine’[7,8], encompasses most of M
the properties of general multilayer networks. Training ex-
T -2 9yn—1z|. 3
amples are drawn from a finite sBt and are of the form n=1
(&*,2") whereu=1,2,... p andp=aN. The components
of the independently drawn input vectdf4 are uncorrelated In the case of an infinite training set there is no correlation

random variables with zero mean and unit variance. The scdetween the current example and those presented previously.
narios examined so fdfl5] focused on realizable and struc- AS a consequence of that, no correlation between the student
turally unrealizable cases, where the corresponding ogtput Vectors and the examples is building up, and the joint prob-
for the various examples is given by a deterministic teache@bility distribution for the student and teacher node activa-
of an architecture similar to the student, except for a possibl§onsx andy (and the noise) takes a multivariate Gaussian
difference in the numberM of hidden units; ¢#  form. Thisis no longer the case here, when such correlations
=M g(B,- &), whereB={B,},-,=w is the set of input- do exist and the joint probability distribution takes a more
to-hidden adaptive weights for teacher-hidden nodes. In thigéneral form, which depends on the training patterns and
where the teacher output is corrupted by additive Gaussiaf@se of corrupted training examples one should also consider
output noise, denoted ag*, the components of which are theé emerging correlations between the student vectors and
independently drawn uncorrelated random variables of zer1® noise corrupting the examples. Due to the pivotal role
mean and variance?, corrupting the different examples. In playec_j by_ this joint probability dlstrlb_utlon_lt seems natural
this more general case the corresponding teacher output is i define it as one of the macroscopic varialjie4],

the form §“=Er’¥'zlg(Bn~ &M) + p*. The activation of hidden 1 K M

noden under presentation of the input pattefhis denoted P(xv.zJ)=— S(xi—J. . &X S(V.—B. . &~
L=B, - £*. We will use indices,j,k, ... to refer to units (*y,2.9) p % |1;[1 Xi=J-& )nl;[1 (Yn=Bn-£)

in the student network ana,m, ... for units in the teacher s u 4

network. The contribution to the local field due to the noise X 8(z=ph), )

variable will be denoted a& Sums over the various indices
will be considered from 1 td or to M, respectively. The

general frameworl 14,15 allows for the analysis of any
training ruleG of the form

together with the overlapR;,(J)=J; B, (between student
and teacher weight vectgrandQ;(J) = J; - J (between stu-
dent weight vectols An additional macroscopic variable
that is worthwhile mentioning, although it is invariant with
respect to the learning dynamics,Tis,=B,- B, represent-
JHi=3+ z§(|)gj[§lﬂl]_ 4 J (1)  ing the overlap between the various teacher weight vectors.
. "N N Notice that most of the variables used are not observables
but are based on the teacher-student model used. To simplify
where| represents the current time step in which a singlehe calculation we will only examine here the case of or-
example is randomly drawn frol@ and invokes the param- thogonal teacher vectors of unit lengith,,= 6, extending
eter update. The last term on the right corresponds to the results to the general teacher case is straightforward. For
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convenience we will also introduce the vecter (x,y,z) of ~ This set of equations cannot be closed in general; the diffi-
dimensionalityK + M + 1, representing student and teacherculties originate in the Green’s function
local fields and the noise contribution.

The main motivation in choosing these macroscopic vari- 1
ablels. is that in the t_hermodynamic I.imm—m, they are A(r;r’)=< de pt(\]|QRP)} fd\] p:(JJQRP)
sufficient for calculating the two main performance mea-
§urgs: the generalization err(z)r, which corresp.ond-s to av.erag- X 8(x—3-£)8(y—B- £ 8(z— p)(1— 8gp) (£ €)
ing E(J,&) =(1/2) o(J,&) — {]° over the Gaussian input dis-
tribution [8]

><5(x’—J-§’)5(y’—B~§’)5(Z'—p’)> (10

=
=

=

Eq=—| >, sin! Qi
== S

Tk VI1+Q;V1+Qy where p,(JJQRP) is the weight probability density condi-
tioned on the values of the macroscopic observables

+> sin ! Tom {Q,R,P} at timet (the microscopic measure in macroscopic
n,m VI+TonV1+Tom subshells of the ensembleand (- )= represents averaging
over all realizations of the training set. The Kronecker delta
—2 sin ! Rin n 1, 5 comes to filter out the case in which both vectgrand ¢
= sin 1+Q,\V1+T,, ) are identical 0z =1). We follow the derivation of14] and

employ the dynamical replica theofi6] to close Eqs(7)
and the training error and(8) by making two key assumptions.
(i) For N—« the macroscopic observables obelpsed

1 K M 2 dynamic equations; we may thus assume equipartitioning of
E,= <§ izl g(xi)_nzl g(yn)_z} > (6) pLoll)IabiIity (or maximum entropyin the macroscopic sub-
= = shells,

using the abbreviatiokf(r))= [dr P(r)f(r). The regular-
ization term has been omitted in both measures as its contri-
bution is limited to the learning dynamics and does not play pt(J|QRP)NH quk—Qik(J)]H A Rin—Rin(J)]
any role inmeasuringthe success of the training process.

To solve the dynamics, one straightforwardly derives a set
of coupled differential equatiorfd4,15 describing the evo- X 1_,[ SLP()=P(r|3)]. (11)
lution of the macroscopic variables in the linhit— o,

(i) The macroscopic equations are self-averaging with re-

spect to the specific realization &; this allows for the
averaging of the macroscopic variables over all training sets.

Both assumptions can be regarded as good approxima-
&Rz nW—vyR (7)  tions in general and will be validated against simulation re-
sults. They may become exact in some cageg., Hebbian
learning; we believe the second assumption to be exact in
general. Following the calculation §14] and employing the
replica identity

d T 2
aQ= n(V+V')+7n°Z—-2vQ,

and

P 1
—P(N= ;f dx’ P(x’,y,z){ H SIxi—x — 5G(X'.y,2)]

J dIW[J,v]G[J,v]

-11 5<xi—x{)]
fdJW[J,v]

v

1%
R

nf dr'Gi(r")A(r;r")—yxiP(r) )
= |i 1 n 1 a
92P(r) o _l[nof dJt...dJ <G[J ,v]};[l W[JI%v] K

2
+% >z
(12

ik ik ﬁxiﬁxk '
using a matrix representation f@ and R and defining the
matrices one obtains, under the further assumption of replica symme-

try (for details see Appendix A and4]), a closed form for
v=(gx"), W=(gy"), and zZ=(gg". (9 Egq.(8.
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’p —1Jd’P’
FP=—] dx' P(X'y.2)

H SXi—x{ = nGi(X',y,2)]

3
—H 5(xi—xi’)] -> 5[{77[Wy+ U(x—Ry)

+X(Q-RRH®(N]i— yxi}P(1)]
7’ d*P(r)

+7ZZ

e (13

where we have introduced the matrid®@s (Q—q) 'L, X
=(V-WR)(Q-RR")"'-U, LL"™=g—RR", and U
=(g®T), and where

_ 1 -1 ’
‘I’i(f)—mf Dv ([(Q—aq) “(Xx—X")]j)»((x
X)), (14

using the notation DVEHiﬁlll\/Zwe‘(”z)”izdvi (used
throughout the papgand

fdx’ M(x',y,z)eX BYf(x,x')

(F(xX"))y = (15

f dx' M(x',y,z)e 'BY

The KX K matrix g and the functiorM (x',y,z) are derived

PHYSICAL REVIEW E 64 011919
X

w18 T L)t ta-we
x(Q-RR){x(y.2) Ry} ;.

in whichx(y,z) = fdxxP[x|y,z]. The largea approximation

is particularly suitable to the model examined here since the

main features of learning in multilayer networks, such as the

breaking of internal symmetries and the asymptotic conver-

gence, can be observed at sensible time scales only for rela-
tively high a values.

To solve the dynamical equatiorig) and (16) numeri-
cally one should represent the continuous probability distri-
bution using a discrete model. Representing the probability
distribution by discrete bins, the method used in the single
layer case, can be employed, in principle, here also to pro-
vide accurate approximated solutions. However, obtaining
solutions in the case of multilayer neural networks comes at
a high computational cost, especially as the network size
increases; here one should monitor numerically the evolution
of a general multivariate probability distribution and solve
numerically the differential equatiori$6) and(7). Using the
methods used in the single layer case would require moni-
toring tens of thousands of variables already in the case of
K=M=2. We therefore look for a parametric approximated
representation of the probability distribution and have con-
sidered two different possibilities: a mixture of multivariate
Gaussian distribution&@lescribed briefly in Appendix Band

ri(r)=

from the replica symmetric calculation; the former is relatedth® local Gaussian approximati¢derived in Appendix G

to the cross-replica overlap matr@ while the latter is an

where the conditional probabilit?[ x|y,z] is replaced by a

effective measure derived from the conjugate variable to th&aussian one witly and z-dependent mear(y,z) and co-
conditional probabilityP(r). This closed set of equations Variance matrix{%;(y,2)}. The first representation can, in

can be solved iteratively by calculatimgand M (x',y,z) at
each step by solving a set of saddle-point equatifmsde-
tails see Appendix A anfil4]).

principle, model any given probability distribution to the de-
sired accuracy, given a sufficient number of Gaussian bases,
and provides simple expressions for E(8. as most of the

However, obtaining such a solution is extremely eXpenjmegrals can be car_ried out ar)alytically; however, the _solu—
sive computationally since a large set of nonlinear saddletion of Eq.(16) requires a continuous update of the various
point equations should be solved at each time step to obtaip@rameters in the representation used, which can be done, in
a solution to Eqs(7) and(13). The computation that was just Principle but may be computationally difficult due to the
possible in the case of single layer networks would come ayariability in seq3|t|y|ty of the. various parameters. The sec-
a huge computational cost in the case of multilayer networks2nd representation is more limited and assumes a Gaussian
We therefore resort to the large approximation that was d'St“bUt'OD with respect to for _each given ¥,z) vector; _
shown to provide a highly accurate approximated solution inowever, it can be solved analytically and is therefore easier

the single layer case even for low values(as low asa
=0.5), and enables one to obtain a simple form for @§)

to handle as long as the approximation used is satisfactory.
Here we present solutions based on the second representation

without solving a set of saddle-point equations at each time

step,

d 1
Zpin == [ ax P(X’,y,Z)(H o1x =X~ nGi(x'.y.2)]

d
-11 5(xi—x{>]—2i L) =y} P(n)]
i 9*P(r)
* ? % Zik OX; Xy ' (16)

where

1
P , - —_
Dzl V(2m Z(y,2)]

1
xexp{ — XY TSy X))
(17)

Using the representatiorl?) in Eq. (16) results(after some
tedious algebrain the following dynamical equations for
X(y,z) and for;(y,2):
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FIG. 1. The evolution of the generalizatiés and training errorgb) as a function of time fow=1,2,5. Solid lines represent analytical
results while simulation experiments are presented by symbols; both were initialized in a similar manner. Simulation results were averaged
over 20 trials; both mean values and error bars are presented. Theoretical results for the training and generalization errors indkescase of
are presented ife) and(b), respectively, for comparisofashed ling The insets ifa) and(b) show the evolution of the various overlaps
(Q andR, respectively, different symbols represent the various overiapghe case otv=5, comparing theoretical results and simulations
(mean values The upperQ lines and symbols correspond to the diagonal values, while the lower lines correspond to the off-diagonal
overlaps.

d_ n— — i X+ Vi X
G2 =—Gi(y.2)+ i Wy +Y(x{y,2) - Ry}, (18) 3000 = f dxg(@—”xgi)g( ix X )

(20

d 1 _ .
azik(yyz) = ;[ 7 Vik(y,2) + Vii(y,2) — Gi(Y, 2) Xk(Y,2)
I1l. THE NOISELESS REALIZABLE CASE

. 2

Gy 2Xi(y. D)+ n°Zi(y.2)] Equations(18) and (7) form the basis to our numerical
+ 9l{S2(Y,2) Vi {S2 (Y, 2) bl + 7% Zix solutions in the various learning scenarios. Firstly, we vali-
date the analysis in the noiseless realizable scenario by com-
. . _ paring the results to those obtained from numerical simula-
with the matrices S=(V-WR')(Q~ RRT) 1_ and tions. In this section we do not consider the case of n@ise
Y=(V=(GX))(Q-RR)™%, and  with  G(Y,2)  5=0) or regularizatiori.e., y=0).
=[dx Gi(r)P[x|y,z], Vi(y,2)=[dxG;(r)xP[x|y,z], and For brevity we will restrict our experiments in this section
Zi(y,2) = [AX Gi(r) G (r) P[X]y,Z]. to the case oK =M =2 and orthogonal unit teacher vectors

Equations(18) and (7) are solved numerically from ap- Tmn= dmn (the Kronecker tensarTo facilitate the compari-

propriate initial conditions, providing the theoretical predic- son between the analytical solutions and the simulation re-
tion for the evolution of the macroscopic variables, and botrsults we introduce fixed initial conditions, breaking the in-

generalizatio Eq. (5)] and training errors. The latter takes herent symmetries in the system macroscopically. This is
the expression essential for investigating the learning dynamics beyond the

symmetric phase as it may take a prohibitively long time to
escape the symmetric plateau otherwise, as in the case of

Etzlf dydz p(y’z)f dx P[x]y,z] infinite training set§17]. We use the f_ollowi)ng in(i)tial con-
2 ditions for both theory and simulation€7,=Q5,=0.5,
2 Q%,=Q5%,=0, R?,=0.001, RY,=R%,=RJ,=0. The initial
X ; g(yn)+z—2 a(xp) joint probability P(r) is assumed Gaussian, with the corre-
I

sponding parameters. The initial conditions for Etg) are
3(Y,2)]1=0=Q°—R%(R%T and x(y,z)|;-o=RC; the learn-
% g(yl)g(yn)_zg 9(6:)9(yn) ing rate used isy=0.5. We first investigate the accuracy of
our approximation in the case of low values, where the
o accuracy of the approximation is expected to be the worst
+ 2 o ,J)} (19 due to the(large a) approximation used. However, in these
. cases we cannot observe the breaking of the symmetric phase
for computationally feasible system sizes. We will therefore
with 6,=%;/\/1+2; and concentrate on the prediction accuracy within the symmetric

1
=§f dydz P(y,z)
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FIG. 2. The evolution of the training and generalization errors in comparison to those obtained from simulations for thekcase of
=M=2, a=20.(a) The theoretical values for the trainiripwer) and generalizatiothighen errors are represented by the solid lines; the
training error simulation results for system sizeNof 5000 are represented by symb@isean values and error bars for 10 trjalEhe inset
shows the semilog plot oE, (solid and circles and E; (dashed and crossetor t=350, ... 500; theoretical results for the decay of
Eg(a==) are also shown for comparisddashed dotted line The regression values obtained for the various curvesEg(e = 20)
=60.88 exp—2.759(1)x 10" 2t] (theory), Eg(@=20)=151.34 exp—2.9(1)x 10~ 2t] (simulationy, E(«=20)=181.08 exp—3.116(1)

X 10" ?t] (theory), E(a=20)=97.65 exp—3.1(1)x 10 ?t] (simulation3, andEy(a= =) =224.51 exp—4.4144(1)< 10" *t]. Digits in pa-
renthesis indicate the regression error in the last digit; regression has been carried out on the medb)vainiés size effects by plotting
simulation results for the generalization error for systems of Nizel000 (dashe@l and N =500 (dotted lines.

phase, where all vectors of the student system emulate the those of Fig. 1. The theoretical values for the training
various vectors in the teacher system with equal succesflower) and generalizatiohighep errors are represented by
Figure 1 shows the numerical solutions of the analyticalthe solid lines; the simulation results for system sizeNof
equations in comparison to simulation results obtained for=5000 are represented by symbdisean values and error
variousa values @=1,2,5). The theoretical values are rep- barg and were averaged over 10 trials. In FigbRwe ex-
resented by solid lines and the simulation results by symbolsaamine the finite size effects, comparing the theoretical results
Simulation results were obtained for a similar system of sizeobtained for the generalization error to the simulation results
N=500, initialized at random, restricting the overlap valuesfor N=500, 1000, and 5000. Simulation results for lovixer

to the ones used for the analytical solutions. Simulation revalues are represented by dash&t=(1000) and dottedN
sults were averaged over 20 trials and the figure shows botk 500) lines and were averaged over 30 trials. For brevity,
mean values and error bars for all cases=(1,2,5). Figure only mean results are presented for smaevalues; error-
1(a) shows the generalization errors as a functions of timebars are generally similar to those Nf=5000.

with the training error for the case ef=5 added for com- To examine the decay rate of the training and generaliza-
parison(dashed ling in all of our experiments, each unit of tion errors in the asymptotic regime we plotted in the inset of
time corresponds to the presentation @i examples se- Fig. 1(a) the decay of both errors on a logarithmic scale with
lected at random. Figurgld) focuses on the evolution of the respect to the number of training iterations fdr
training errors, where the generalization erratr<5) is =350, ...,1000; theoretical results for the decay Bf(«
added for comparison. The insets show the evolution of the=x) are also shown for comparisédashed dotted lineAll
various overlaps for the case af=5 in comparison to the three graphs decay exponentially to their asymptotic values
results obtained from simulatiof® values in Fig. 18) and  although the prefactors and the decay rates seem to differ and
Rvalues in Fig. 1b)]. We see that the results obtained are inprobably depend on. The decay rate for the finite case is
good agreement with the simulations even at these dow clearly slower than that of the— case as expected.
values. It is only fair to mention that the discrepancy be-

tween the theoretical results and simulations will increase at

later times due to the accumulating errors.

However, the main interest of the neural networks com- While interesting academically, realizable training sce-
munity, in the case of multilayer networks, is in the symme-narios are very rare in practical online learning applications.
try breaking process whereby specific vectors of the studenwe therefore turn to the arguably more interesting case of
system specialize, each learning to imitate a specific teachatructural unrealizability, where the number of student vec-
vector. In addition, one would also like to gain insight into tors is smaller than that of the teacher vectors. It would be
the convergence phase and its dependence on the vatue of particularly important to examine this case due to the ap-
In Fig. 2(a) we show the evolution of both the generalization proximations taken along the way; we should verify the va-
and training errors for the case of=20, which is suffi- lidity of the theoretical results in this case, which may result
ciently high for observing the symmetry breaking phenom-in probability distributions quite different from those ob-
ena; the initial conditions and learning rate used are similatained in the realizable scenario. Also in this section we do

IV. STRUCTURAL UNREALIZABILITY
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FIG. 3. An unrealizable scenario; a system comprising two student veé€togsis trained on examples provided by a system comprising
three orthonormal teacher vectdvs= 3. The initial conditions used af?,=0.05, Q%,=0.4, Q%,=0.6, with all other overlaps set to zero,
the learning rate isy=1 and the system size used for simulationdlis 1000. Simulation results were averaged over 10 trials, presenting
both mean values and error bafg) The dependence of generalization and training errors on time witt20; the inset shows the
correspondind values. Lines represent theoretical values and symbols represent simulation results, upper lines correspond t@Q diagonal
values and the lower lines to off-diagonal values. The insdbpthows the corresponding values, the upper curves represent student
vectors that emulate specific teacher vectors while the lower curves represent cross overlaps between student vectors and teacher vector
emulated by other student vectors; the middle curves represent overlaps between student vectors and the teacher vector, which is not
emulated by any of the student vectors in particullar.The asymptotic = 1000) values of the generalizatiédashed line and circle¢snd
training errors(dotted lines and crossefor different @ values, comparing theoreticéines) and simulation(symbols results.

not consider the case of noigee, 0=0) or regularization ating the effect of noise on the model's generalization per-
(y=0). formance. Similar scenarios have already been examined in
We demonstrate the efficacy of our approach in the casthe single layer cagel8] and discrete learning rules; we will
of a two node systemK(=2) trained on examples provided focus here on the multilayer case representing a continuous
by a three node teacher systeM € 3), all orthogonal and mapping trained by gradient descent.
of unit length. The equations used are similar to those of the The equations used are similar to those of the realizable
realizable case, Eqs18) and (7), but with a modifiedM  case, Eqs(18) and (7), except for the reactivation of the
=3 value. The initial conditions used aR{;=0.05, Q%;  noise term. No regularization is used in the current section
=0.4, ngz 0.6, with all other overlaps set to zero; the learn-setting y to zero.
ing rate isy=1, the number of examples i8N, where « In Fig. 4 we demonstrate the effect of additive output
=20, and the system size used in simulation®is1000.  noise. We see that the effect is mainly in the length of the
The results presented in Fig(aB show a good agreement symmetric phase and in the convergence to a suboptimal
between theory and simulations and a qualitatively similar,symptotic solution(a constant learning rate of=1 is
result to the infinite training set case. The insets in Figa). 3 used. We examine the case 8f=M =2, using initial con-

and 3b) show the correspondin@ andR values. . N 0
Figure 3b) describes the asymptotic values of generaliza—dltlons of the form:Q;i =0.5; Qy; . andRj, are set to values

tion and training errors for different values, monitored at samples_ un_|forml)_,U[0,1/\/N] according to the system size
t=1000, once the systems had stabilizewtice that the N_used in simulations. The number of examplle.f, usediNs

equilibration of the system at=1000 is not guaranteed due With @=20 and the noise levestandard deviation of the
to the spin-glass dynamicsThe learning rate used i=1. Qaussq:m dl_stnbutujnls q=0.2. The system size u_sed in
It is easy to see that the agreement between theory and sim§imulations isN=1000. Figure &) shows the evolution of

lations is generally good but deterioratesnadecreases. Itis the generalizatiorthighey and training errors as a function
difficult to find the exact manner in which both generaliza-Of time, while Fig. 4b) and the inset show the evolution of

tion and training errors decay to their asymptotic valiies,  the order paramete@ andR respectively. The upp&p and
Eg(a=2)=E(a==)] as a function ofa due to its sensi- R curves correspond to the diagonal overlaps while the lower

tivity to the inherent numerical errors. curves represent the off-diagonal parameters. We see that the
analysis is in general consistent with results obtained from
V. ADDITIVE OUTPUT NOISE simulations, although inconsistencies occur around the tran-

sition point between the symmetric and asymptotic regimes.

Finite « training scenarios are of particular interest in  Next we examine the efficacy of our approximations as
cases where the training data is corrupted by some type dhe noise level changes shown in Figa)s We plotted the
noise, being the most common case in practical training scesvolution of the generalization and trainifigse) errors as a

narios. This is a particularly important aspect of the currenfunction of time, comparing them to simulation results aver-

study as it enables one to assess existing methods for allevaged over 10 trials each. Initial condition, learning rate, and
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FIG. 4. The effect of additive Gaussian output noise on the evolution of the training and generalization errors and on the macroscopic
variables in the case df=M=2. The initial conditions used for the student-vector length@fe=0.5; Qgi#]— andRY, are set to values
sampled uniformly in the rang[é),l/m], corresponding to the system silkeused in simulations. The learning ratess- 1, the examples
ratio is =20 and the noise levet=0.2. The system size used in simulationslis 1000 and the results were averaged over ten trials each.

the ratio of examples are similar to those of the previous resentation of the conditional probability distribution would
figure. We see that our approximation becomes less accuragmable one to make accurate estimations of this type.
as the noise level increases, especially around the breaking of In Fig. 6@ we examine the dependence of the asymptotic
the symmetric phase. This is probably due to the deterioratvalues(measured at= 1000, once the system has stabilized
ing accuracy of the local Gaussian approximation as thef both generalization and training errors on the valuexpf
noise level increases. For low values, when the inherent having a fixed noise lever=0.3 (in the insetc=0.1). We
system symmetries do not break, our method provides aee that our approximation provides a good description for
good approximation to the results obtained in simulations, atarge « values, becoming less accurate for low values as one
shown in Fig. Bb) for the case ofx=12. In both cases, the might expect. In addition, we see that as expected, the gap
theoretical asymptotic results are in good agreement with thbetween training and generalization errors for a giueim-
simulations. creases with the noise level. The dependence of generaliza-
In principle, one could obtain from the analytical solu- tion error on « for different noise levelsoc=0.1 (lower
tions an estimate to the improvement in performance that cacurve) and 0.3(higher curve is shown in Fig. &). As ex-
be obtained from employing the early stopping technique apected, the difference between the asymptotic values de-
well as an estimate for the optimal point in which early stop-creases a& grows.
ping should be applied. However, the disagreement between One should notice that the asymptotic training and gener-
the results obtained analytically and the simulations isalization errors do not converdas « increasesto the opti-
mainly around the point in which the internal symmetriesmal value ofa?/2; this is due to the fixed learning rate used
break(and mainly at high noise leveglsmaking such an es- rather than the decaying rate required for optimal asymptotic
timate inaccurate. We assume that employing a refined regesults.

v . 0.6 -
(a) 0.0 - (b) -
0.2 Eto.os T Bttt
oosh D 0.4 01 L\._._..____*___ _
Eg m“—_s;_-—;oo Eg t 06%?;“‘1%0:.:’2::2&00
0.1 t 1 B misaxmas é ,,,,,,
e T 02
113353y R
O(!J 260 = 460 660 860 1000 00 160 200
t t

FIG. 5. Additive Gaussian output noise in the cas&ef M =2; the learning rate used and the initial conditions are as in Fig. 4. The
system used for simulations is of silke= 1000 and results were averaged over ten trials for each geinthe dependence of generalization
and training(insed errors on time for different noise levels=0.1,0.2,0.3from the bottom upin the case oftxr=20. (b) The same for the
case ofa=12 ando=0.1,0.3,0.5.
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FIG. 6. The asymptotic values of generalization and training efroeasured at=1000) for differenta values with a fixed additive
Gaussian output noise level; the case considered, the learning rate used, and the initial conditions are as in Fig. 4. The system used for
simulations is of sizé&\=1000 and results were averaged over ten trials for each gairkeneralizatiorthigher curve and training(lower
curve errors foro=0.3, where the dotted line represents the asymptotic value of both training and generalization esrdyscasnes
infinite and to which both errors converge. The inset shows for comparison the corresponding genergfigiigmcurve and training
(lower curve errors fore=0.1. (b) The dependence of generalization errorfior different noise levelsg=0.1 (lower curve and 0.3
(higher curve. The inset shows the corresponding dependendegfi= E,(a) —Eg() on a1 for a values high enough for the system to
escape the symmetric phase; the noise levels used-afe1 (lower curve and 0.3(higher curve.

To examine the decay of the generalization error to itshe dynamical training equatiaf).
asymptotic value we plotted in the inset of Figlbp the Most of the analyses linking the regularization to the
dependence oAE,=E (a)—Eg(*) on a~ 1 for « values noise level corrupting the data are based on single layer sys-
high enough for the system to escape the symmetric phaseems or on linearizing the system in the asymptotic regime.
The decay seems to be proportionaldo? [e.g., the power Ideally, we would have liked to exploit the current analysis
values obtained from regression in the casesef0.1 are to obtain an analytical expression for the optimal regulariza-
1.0(1) and 0.9(3) from the theoretical results and simulation term to be used for data corrupted by additive Gaussian
tions, respectivelyand depends linearly om?; dividing the  noise of a certain variance. However, the current framework,
residual error for the noise levels presented in the figure based on Eq9.18) and(7), is solved numerically making it
=0.3 (higher curvé and o=0.1 (lower curve, gives ap- difficult to provide the desired link analytically. We therefore
proximately a constant value of 9. demonstrate the effect of regularization through numerical

To examine the dependence of both training and generali-
zation errors on the noise level, we plotted in Fig. 7 the
asymptotic values of generalization and training erfarea- 0al
sured once the system has stabilizéat different additive
Gaussian output noise levels with fixed=20. Using con-
ventional regression methods we find the following depen-
dence ofE, and E; on the noise leveb: Ey=1.060>41) Ey 1 o2
(theory and E,~0.940%%82®) (simulation3, and E, 9
=0.6302970) (theory and E;=0.655"%C) (simulations.
This is in agreement with our assumption of a quadratic o1t
dependence.

VI. REGULARIZATION 3 01 02 03 04 05

One of the main problems facing practitioners in the field 2
of neural networks is the improvement of generalization abil- 5 7 1he asymptotic values of generalization and training

ity in trained networks, especially when noisy training datagqrs(measured at=1000) for different additive Gaussian output
are provided. This is typically done by imposing constraintsyjse |evelsr with a fixeda=20: the case considered, the learning
on the space of solutiongor a general introduction to the rate ysed, and the initial conditions are as in Fig. 4. The system used
problem and the methods used $&8, reflecting our prior  for simulations is of siz&\=1000 and results were averaged over
belief in the type of solution we are looking for. One of the ten trials for each point. Using simple regression techniques we find
most common mechanisms for adding such constraints is th@at the asymptotic values of boHy andE, depend approximately
introduction of a quadratic regularization term, as in the lasin ¢ (for both theory and simulatiohsThe inset shows the log-
term on the right of Eq(2), which leads to a modification of log plot of the asymptotic values &, andE, versusa.
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FIG. 8. Training with regularizers. The case considered, the learning rate, the system size used for simulation, and the initial conditions
are as in Fig. 4(a) The dependence of generalization and training errors versus time for different regulajizalfes, where generali-
zation errorgthe upper threeare for y=0.01, y=0.001, y=0.0 from the bottom to the top and training erréiise lower thregare from
the top to the bottom; symbols show the simulation resultgyfe0.01 andy= 0.0 (simulations for the case gf=0.001 have been omitted
for brevity). The noise level used is=0.6 anda=12. (b) The asymptotic values of the generalization efmeasured at=1000) for
different « values and fixed noise levet=0.3. The upper curve represents the case of no regularization while the lower curveyis for
=0.005. The inset shows the corresponding dependens& efE (a) — E4(c) on a1, where the simulation results are shown by symbols
with no error bars for brevity.

solutions obtained in specific cases. scenario using our analysis; however, in practice the numeri-
Firstly, to examine the effect of regularization on both thecal inaccuracies reduce the reliability of such a prediction.
training and generalization errors in the symmetric plateau, The inset of Fig. &) shows the dependence &fE,
we present the training scenario wheéfe=M=2, a=12  =Egy(a)—Eg(«) on a1, for sufficiently largea such that
and where training examples are corrupted by additivéhe system escapes the symmetric plateaus. The theoretical
Gaussian output noise of standard deviaticn0.6. Simula-  results are in agreement with the simulations, indicatayy
tions were carried out using a system of skke 1000, and proximately a lix decay in the generalization error to the
simulation results were averaged over 10 trials. Figue 8 asymptotic valuegthe regression power figures obtained nu-
shows the evolution of the generalization and training errorsnerically from both theory and simulations are generally
for different v values, where generalization errors are for around the decay power of 1, but have significant error)bars
=0.01, y=0.001, andy=0.0 from the bottom up, while
training errors from the top down. Lines represent the theo-
retical results while symbols represent simulation results. It
is clear that while regularization has little effect on the train- We presented a theoretical framework for the analysis of
ing error in that phase it clearly reduces the generalizatiomnline learning scenarios in multilayer networks, where the
error. It should be noted that, although the main significancéraining examples are sampled with repetition from a fixed
of regularization is in the asymptotic regime, its effect on theexample set. The framework, being based on rather solid
symmetric phase is also important as many practical trainingheoretical tools, provides a controlled and unbiased descrip-
sessions are effectively terminated at some suboptimal syntion of the learning dynamics. It is then used for studying
metric plateau. realizable and unrealizable scenarios as well as scenarios
To examine the effect of regularization asymptotically wewhereby the data is corrupted by additive Gaussian output
plotted in Fig. 8b) the dependence of the asymptotic gener-noise and where regularizers are employed for improving the
alization error ona, measured at=1000 for fixedo=0.3  network’s generalization performance.

VII. DISCUSSION

and a regularization value of=0.005 (lower curve; the To obtain the set of equations representing the network
upper curve represents values obtained with no regularizatynamics we employ the dynamical replica method. This is
tion. the only fundamentalapproximation used in this analysis,

One should note that in the case of infinite training sets itomprising three assumption&) Equipartitioning of the
has been shown that there is no advantage in using a quprobability (or maximum entropyin the macroscopic sub-
dratic regularization term with a constant prefactor in theshells asN—o, (b) The macroscopic equations are self-
asymptotic regim¢19], and in fact, introducing such a term averaging with respect to the specific realization of the data,
always results in a higher asymptotim training stepst) (c) The replica symmetry ansatz. These assumptions can be
generalization error. Therefore, there must be a value,of regarded as good approximations in general and may become
for a given noise level and regularization prefactor, aboveexact in some cases. On the basis of simulation results we
which the introduction of a quadratic regularization term isbelieve the self-averaging assumption to hold in general
detrimental to the asymptotic performance. This criticalwhile the equipartitioning and the replica symmetry assump-
value of @ can be determined, in principle, for a specific tions may break down in extreme cases such as verydow
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values(lower than 1}, high over-realizability etc., when the initial conditions. In addition, it would be desirable to define
error surface becomes rugged or suffers from multipleoptimal training parameters and learning rules in a principled
minima. manner, similarly to the studies carried out in the case of

Employing the dynamical replica theory one obtains Eqgsinfinite training set§20—24.

(7) and (13), which are the main result of the analysis and It is fair to say that it is difficult to see how these objec-
provide a closed set of equations that could be solved at hugeves could be achieved in the current framework; further
computational cost. simplifications may be required for successful exploitation of

To be able to produce results in many different scenarioshe analysis. Nevertheless, the current paper prepares the ba-
and under different training conditions we employed two fur-sjs for future studies in this area.
ther approximations. These are considered merely for simpli-
fying the numerics and should not be regarded as essential
ingredients of the calculation. They have both been em- ACKNOWLEDGMENTS
ployed because they provide a reliable approximation in the
relevant parameter range and would have been abandonedD.S. and Y.-S.X. acknowledge support by EPSRC Grant
otherwise. The first of the two is the high approximation. No. GR/L52093 and the British Council grant: British-
This has been shown to provide an excellent approximatioGerman Academic Research Collaboration Programme
even for very lowa values[14] and is therefore expected to Project No. 1037. We would like to thank Ton Coolen for his
be highly accurate in the cases we concentrate on here, ggntribution to this work as well as for careful reading of the
most of the interesting phenomena in training multilayer netmanuscript.
works appear only whenv is sufficiently high(e.g., the
breaking of suboptimal symmetric solutions and the
asymptotic convergengeThis approximation is likely to
break down only for very lowr (lower than 3, which is
outside of the relevant range of the current study.

The second approximation used is the method employed The main objective of this appendix is to provide a rough
to model the conditional probability distribution of the derivation of the Green’s functiotd[ . ..] using the dy-
teacher and student local fieldB[x|y]; such a model is namic replica theory and following14] and [15], from
essential for obtaining numerical solutions to continuousyhich we obtain the macroscopic dynamical equatiti
functions in general and may take various for(esy., dis- in an explicit form. We first carry out the disorder averages
crete bins, a mixture of Gaussians, tin the current analy- |eading to an effective single-spin problem. The integrations

sis we employed the local Gaussian representation to facilire carried out using saddle-point methods for the replicated

tate thg cor_nputation as it has been shown to provide a googl ., parameters at each time step employing the replica
approximation already for low values[14]. Also here, the symmetry(RS) ansatz

approximation may break down for low values, specific
training rules, high over-realizability, etc., where the field
distribution becomes more complex. Of all the approxima-
tions used, this is likely to be the most fragile and it may be
therefore desirable, in some cases, to replace it by a more Following the dynamic replica theory ifl6], we write
accurate model such as the mixture of Gaussians we préhe Green function as
posed in Appendix B.
.The results obtained a're.in good agreement with thg simu- A(r:ir)=lim lim < < f H dJ® p,(J9 QRP)
lations and support heuristic methods used by practitioners, N0 Nesos o
such as early stopping and regularization. The framework
successfully provides a description of the dynamics of both 1
training and generalization errofand of the various over- Xl—i[ o0 =, 'f)l;[ (Yn=Bn-£)d(z=p)
laps, some understanding of the link between the value of
and the breaking of internal symmetries, certain asymptotic , , ,
scaling laws, etc. Unfortunately, due to the complexity of X (& & )(1—5§g/)H S(x{ =3 &)
dynamical equations and the computational difficulties we
have experienced in solving them, our ability to provide ana- , , .,
lytical solutions is limited. These are highly desirable for Xl;[ S(Yyn=Bn §)8(z"—p )>
deriving analytical relations between the training and gener-
alization conditions in noisy scenarios, in both the symmetric
phase and asymptotically, and to make a quantitative link
between the noise level and the optimal regularization to b&oting that the averages over the data sets already include the
used. noise distribution as well, and that) = represents averaging
Other questions that are of interest are to do with theover all realizations of the data set. Using the definition of
length of the symmetric phase and its dependence on the(r;J) and the integral representations for thdistributions
ratio «, the learning rate, the architecture chosen, and th@volving P(r), we obtain

APPENDIX A: REPLICA CALCULATION
OF THE GREEN FUNCTION

1. Disorder averaging

DD’

> . (A1)

=
=
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A(r;r’)=1lim lim
n—0 N—oo

x]1
aik

IT dPeI] dor
a,r” al

8(Qu=3 IO I 8(Rin =3By
« @iNJdr” P(r")P(r") drdr’ eif.r
(277)2(K+M+1)

1
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Xexr{—iz XL g1, y,By- E4—izp*

S I 9,:Bn-§”—i£'pﬂ>

=
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(A2)

with the conjugate functiof(r).

We first define some relevant functions to facilitate the

calculation

D(F;g.p>=exp[ Lsp

a o

P(J*&B-£p)—i > xJ-&

_i; g/an-f—iEp )

D(1)=(D(I;£,p))5

ID(1;€,p)

&(1)=(&D(; §p>>D—< %

>~. (A3)
D
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l,
x<exp[—i;2 P(J*&B-£p) =i X/ I &

]

L(rir")
D*(0)

—i; YnBn- é—izp

—i2 YaBy €-iz'p

=exp(pIN[D(0,0)]} (A4)

with £(r;r')==]'&(r)&(r'). We can then write the Green
function in an integral form dominated by saddle points,

ot dFdF, ioe YY)
A(r;r )ZJWGXQI(F~r+F -r")]

X lim |imqudeadeF“e IT dP=r)
n—0 N—ox a,r"
(rir’)

D*(0)

xexp(N¥[q,Q,q,Q,R.{P }]) (A5)

with

1 . .
v[...]= 5[; Tr(Q*Q)—2i ; (Tr R*R®)

+i> f dr P(r)P(r)

+2, Tr(q**q”)
ap

+aInD(0)+ lim —In H dJy
N~>oc
Xex;{ —5[2 Q. 3¢ — 2|§] RYJY.B
+ 2 qihas. af ) (AB)
apik

By using the permutation invariance of the integrations andSimilarly, the joint probability distribution can be obtained,

summations with the pattern labels, we evaluate the training-
1 in Eq. (A2) in the

set average of the expression fdf . . .
thermodynamic limit

1
<—2 > <§“-§“>e'“>
p nFEV

=

4N
:pTl ; <ex;{

o

2 P £B &p)

s:l—

>p2
)

> P J“~§,B~§.p>—i2i i &

o

Ql—

dF irer
P(f)ZJWe

X lim Iidequd&deﬁ IT dP(r)
n—0 N—oo a,r”

xexp(N¥[q,Q,q,Q,R {P}])D((O; (A7)

Using the normalized expression fé(r) we see that no
overall prefactors in the expressiondfr;r’] or P(r) are to
be taken into account. Then we have

L(rir')

D(0)
(A8)

» drdr’ o
A(r;r )ZIWGXQI(FT‘FI’ -r')]
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with the order parameter values defined at the saddle point,

dx dxi" dy,
and -
A fal o 1;[\/_77 (zlo)
P = | o 20 (A9)
(2m)KtMeLT D(0) xexp{iZ X"~ (Ry) 1+ — 2 x(x® yz)]

First, we calculate the explicit expression f0(0).

| =

dx@ dx® dy, dy, dzdz 2 X(Q=

[T 251 2 S e 3 e e

n

e +3 [ se)ia-ren S 5]+ S v
+IE ynyn"HZZ_E E P(Xavyaz) ik @ @ n
1 do;
N ————— | DyD(Zo) —
xf Dgf D(p/a)exp[—iE (Z X3¢ hq_RRTJ yElde fﬂ o
]
1 dx dx{
+> 9anj)§j—i2p Xexﬂ[‘g"T(q‘RRT)lV H
1
dx*d i . .
H XZWX' I1 dyndynD(z/(r)exr{|§, XX Xexp{ ) %:( X' (Q—Q)ikXi

. A 1
i %yn—i;g P(x"y.2) H2 XD U= R+ — X X(X“,y,Z)]

1 A 1 dv;
xexr{——[z aiPxxE =—f DyD(Z/U)fH —
2| apik V|g—RR| i 2w

+22 RmX yn+z yn XQX[{-EVT(C]—RRT)]'V
2

ain

(A10)

where Dv is the Gaussian measure as defined before, and
where the spin-glass order parameters and the oveRgps
between the student and teacher weights are defined as

1 dx; 1
X f]_[ expl — x(r)
VIQ—all T v2m L«
=30, R%=J"B,. (A11) 1

—=(x=Ry=v)T(Q—q) " *(x— Ry—V)H
We now employ the RS ansatg’={Qi(a=B).qi(a 2

#B)}, RY=Rj,, andP*(r)=ix(r). ThenD(0) can be fur- n
ther simplified =f DyD(z/a)f Dv fdx Q(r;v) (A12)
dx*dx®_ dy,dy, .
D(0)= f IM—1II — ”D(z/o)exp[iE X2xE with
ar n 2 ai
; 1 1 1
+|; ynyn E X(X VY Z):| Q(r;v): EX[{—X(Y)——(X—R)/—LV)T
Jio— K o 2
|Q—ql(2m)
55>
X —
& 2[ (Qu=GiX\Xe X(Q-q) *(x—Ry-Lv)|, (A13)
o3 al 3| 2 g -2 R
ik a ain LLT=q—RR", andB=(Q—q) L.
Second, the integration aif* can be carried out and the
+2 §,2 corresponding expression can be evaluated explicitly using
e the RS ansattin the limit n—0)
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1 1
Together with the rest of the terms [ . .. ], we have MU)ZQXF{;ﬂr)_ 5 (x= Ry)(Q—a) *(x—Ry)|.
v o1 A A A o (A20)
lim—= E{Tr(QQ)—Zi Tr(RR)—Tr(gq) —In|Q—q|
n—of 3. Explicit expression for the Green function
—TH(O—-q) " 1§]-TRT(O—§)R]} In _order to work out the explicit expression f_or theAGreen
function (A8) we need to calculate the functiof(r;r’).
_f dr x(r)P(r) First we take then—0 limit of D(?,£,p) [Eq. (A3)] and
X simplify the result using the saddle-point equati@8)
+af DyD(z/o)f Dvin fdx Q(r;v)|. R _ .
D(r,g,p)=l|mf DyD(z/(r)J Dv fdxﬂ(r;v)e e
(A15) n—0
n-1
2. Derivation of the RS saddle-point equations X f dx Q(r;v)

We then work out the saddle-point equations with respect
to Q,R,q

r=Q-q=(Q-q9)"% R=-i(Q—q) 'R,

fdxﬂ(r;v)e*ﬁ‘r

:j DyD(z/U)J Dv deQ(r;v)

g=-(Q—q) Yg—RRH(Q—q) %, A16 -
q=-(Q—a) “(qg )(Q—q) (A16) :f dr P(ryeii . (A21)
which allow us to eliminate most variational parameters.

Then the¥ can be simplified as Next we evaluate thé&;(r) by working out the partial deriva-

tive on §; and separating the summation over replica indices

1 1 ; o
‘If=ETr[(Q—RRT)(Q—q)’l]JrEIn|Q—q| into two groups:iea=1 anda>1,
ik 1 ) .
—J dr x(r)P(r) &(r)= ;Ei FaiX Jﬂ;Zﬂ FanX an—Ei IXiJjj
+af DyD(z/a)f Dvin fdx Q(x,y,z;V) |. —> iYnBu D(F,g,p)>
- -
D
(A17)
= T(r)Jt T (r)B.. C.(r)J¢
The saddle-point equation fou(r) results in _[Z Fi(0J; +§n: f”(r)B”JJri,%l K3
_ 2 20942 . A A
o) e~ (L2 o-2%12 va Q(r;v) + > Kn(1)Bhj |, (A22)
_—M— na>1
Vemt 2me D e o vz
where the RS ansatz is used,
=P(y,2)P[x]y,z] (A18) o o A
FH(r)=6a1Fi(r)+ (1= 8,0) Ky (r), (A23)

where we have defineB(y,z) and conditional probability
P[x|y,z], respectively, as with
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.1 . . 1
Jﬂ(f)=;([51,|X(1)(r)]7?(r,§.P)>6—'Xﬂ)(r), Fi(r)=—P(Olax(M)]1-L[aPr)], (A29)
~ ~ 1 - .
K= (@O IDE )5, (A24) k=P [ ov |
“ fdx’ Q(x',y,z;v)
and the index runs through all student and teacher indices.
We expressC(r;r') in terms of Eq.(A22), performing the A
summation over the replica indices and taking the limit of dx" Q(x",y,zv)[dix(r)]
n—0. We then obtain X . (A30)

J dx" Q(x",y,z;v)

£(rr ):% [FiFe= Kk (Qi—dlin) Separating the index to the student(labeled byi) and

teacher(labeled byn) indices, we obtain four different func-
Al A A, A, tions
+ 2 (Fi=K(F= Ko au

F(N=[(Q=a) *(x=Ry)JiP(r)+[4 InM(r)]P(r)

2 [(F-KoFR-Ky —aiP(n)

+(F —KD(F=Ko)IRin Fo(r)==[RT(Q=a) " (Xx=Ry)]sP(r) +[ 4, INM(r)]P(r)
S —P(r)

*2 Gk, a2 =~ [R(Q=) " *(x=Ry) l,P(N) +yoP(1)

M (r)eXTBv

The Green function becomes +P(y z)f Dv
fdx’ M(x',y,z)e" B

A(rir) =2 [A A~ KK (Qik—dik) -
A fdx'[anM(x',y,z)]eX BY

' e o , (A31)
+% (Fi—K)(Fe— Ko ai f dx' M(x',y,z)eX B
+§ [(Fi—K)(F—K7) Ki(r)==[(Q—a) *Ry];P(r)—;P(r)+[d; InM(r)]P(r)
) ) M(r)eXTBV
R =KD (Fa= o) Ry +Piy.2) [ D
fdx’ M(x',y,z)eX B
2 (Fam Ka)(Fo= K, (A26)
f dx'[(Q-a) X [M(x'y,z)e "B
using the inverse Fourier transforms Bf(r) and K;(r) X - :
fdx’M(x’,y,z)eX Bv
]-"(r)=JLﬁ-"(f)eiF'r (A27) T 1
| (2m<mra e Kn(1)=[RT(Q—a) *Ry]P(r)
M(r)eXTBV
. —P(y,Z)f Dv .
IC|(I'): J WIQ(r)e . (A28) f dx’ M(x’,y,z)ex Bv
Making use of the saddle-point equation fg(r), Eq. jdxr[RT(Q_q)flxr] M(x',y Z)ex’TBv
A n 1)

(A18), and the expression fdp(r,&,p), Eqg. (A21), we can «
work out the explicit expressions of the functiofigr) and J dx’ M(x'.y Z)eX,TBV
IC|(r)1 1Y
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M e><TBv

+P(y,z)f Dv
fdx’ M(x',y,z)eX B

fdx’[o"nM(x’,y,z)]ex'TBV
X . (A32)
de’ M(x',y,z)e" B

Rescaling the above functions byP(r): F(r)
=F(r)/P(r) andI~C|(r)=IC,(r)/P(r), and defining the func-
tion

®i(r)=Fi(r)—Ki(r)

1 B |
_WJ DV([(Q—a) “(Xx—x") 1)«

X(S(X=X"))y (A33)
with the abbreviation
fdx’ M(x',y,2)e" BYF(x,x')
(FOXX"))e = , (A34)

j dx' M(x’,y,z)eX B

we obtain the following compact forms f&f(r) and K(r)
F(=[Q-a) *x—Ry)];
~[(Q=a) Y(a—RRH®(")];,
Ki(n=F(r) - ®i(r),
Fa(r)=Ko(r)=yn=[RT®(1)],. (A35)

Inserting Eqs.(A33) and (A35) into Eg. (A26), we finally
obtain the rescaled Green function

~ A(r;r”)

A(rr'y=——
P(r)P(r")

=yTy' +(x—Ry)"®(r")+®"(r)(x' —Ry")
—®"(r)(Q—RRH®P(r") (A36)

with @(r) given in Eq.(A33). Working out the integration

f dr’A(r;r')g(r'>=P(r)fdr’P(r')g<r’>74(r;r'>
=P(nI'(r) (A37)

with
I'(r)=Wy+U(x—Ry)+X(Q—RR")®(r) (A38)

and

PHYSICAL REVIEW E 64 011919
X=(V-WRN)(Q-RR")1-U, U=(g®"),
(A39)

we finally obtain the equation for probability distribution un-
der RS ansatz, which is E¢L3).

4. The large a approximation

In the largea limit, the order parameter matrixtakes the
valueRR'" and the elements of matrR are very small. We
can therefore use the cumulant expansion up to the second
order to obtain

— —
M(r)= P[le,Z]eXP[ — 5 [X=x(y,2)]"B'[x=X(y,2)]

1— _
+51 X'B'x—x"(y,2)B'x(y,2)]{+---, (A40)

the overline denotes averages with respecPfa|y,z] and
the matrix B’ is of the formB’=(Q—q) (q—RR")(Q
—q) L. Furthermore, we haveQ—q)=(Q—RR"), the
function @(r) in Eq. (A33) and the matrixU in Eq. (A39)
become

®(r)=(Q—RR") "1(x—x),

U=[V—(Sx'(y,2))](Q—RR") 1. (A41)

Finally, the dynamical equation for the probability distribu-
tion in Eq. (13) becomes equivalent to Eq16) with the
explicit form of I'(r).

APPENDIX B: THE MIXTURE OF GAUSSIAN
REPRESENTATION

A mixture of Gaussians can represent an arbitrary prob-
ability distribution given a sufficient number of basis func-
tions. Using a mixture of Gaussian representations for the
probability distribution(in the noiseless case

O(x ):i L
i p=1\(2m)TMA |

_x\ T v
Xexp{— %(X yXP) Apl(x yXP” (B1)

and the parameter sét=[w, X, ,
tions for R and Q follow directly,

A,], from which the equa-

d in . . .
:: =n§ Wp{im‘, lé(l,n,m)—; I‘é(l,n,j)}—va

(B2)

and
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) ith
%:nz WP[E (157, k,m) +15(k,i,m)] "
p m .
vik<y,z>=2I I5(i,k,1)— 2 Ja(i,k,j),
- [Is<i,k,j>+|§<k,i,j>]]+n22 w,Zh :
J p
—29Qi, (B3) Win(y,2)= >, K3<i,n,l>—; La(i,n,j),

where

Zi(y,2) =2, 14(ik,j,1) =2 30 k,j,m)
Zh= 3 14l ki D=2 Ju(i ko j.m)+ 3 Ky(ikmn). “ T fa ™
] jm mn

The integrald 5, 1,4, J4, andK, are defined in Appendix C. +%;, Ka(i.k,m,n) €3

The difficulty is in obtaining a set of equations for the
evolution of the parameter sét This can be done in prin- where the integrals on the right-hand side depeng andz
ciple by minimizing some distance measure between the ughrough3,(y,z) andx(y,z).
dated distributiorP(x,y) and the approximatio®(x,y). We
experienced computational difficulties in carrying it out us-
ing a quadratic distance measure mainly due to the different
sensitivities of the various parameters. Nevertheless, being The three-dimensional integrals in E&3) are given by
capable of representing any probability distribution, we be- 5
lieve that this representation may allow one to obtain more _ \ﬁ —(1/2)x3 -
accurate results where the local Gaussian approximation 5(1.2.3 W(e X29(y3)) =11l'120(Y2),
breaks down.

2. Three-dimensional integrals

2 2
— —(1/2 —
APPENDIX C: LOCAL GAUSSIAN REPRESENTATION J3(1,2,3 = \[;(e ( ’XleQ(X3)>—|1[F129(®13)
FOR THE CASE OF OUTPUT NOISE AND
REGULARIZER +\EACG_(1/2’("’§3,
For a locally Gaussian approximation, the conditional 77

probability has a form
2 —(1/2)%2

1 Ks(1,2,3= /(e 1y,0(y3)) =11y20(Ya),

PIXy.2]= =

V2m)®2(y,2)|

1
X exp[ - E[x—ﬁy,z)]TE1(y,z)[x—ﬂy,2)]] '

C1

©) with (...)=fdx P[x]y,z]... and
The main advantages of this approximation are that the inte-
gration over the student fieddcan be carried out analytically \F _ 2 \F 1 2
and the partial differential equation f&(r) in Eq. (16) can li=/—e W) = ;ﬁe w2eie), - (cs)
be simplified to a set of differential equations for the param- !
eters2(y,z),x(y,z) as described in Eq18).

2 —(12)%2
L3(1,2,39 = ;{e 1y,0(X3)) =11y29(0 13),
(C4

043= (73051_71213)(7513: Ac:(¢1223_213212)¢13’
$i=1+25,  d13=1Nd1(P1d3— 273,

I‘12:72_21?(_1/(1’1-

1. The equations for the parametersQ and R

Under this approximation, the equations for the macro-
scopic parameter® andR in Egs.(7) become

dR —
dt UJ dy dz By, z)W(y,z) = yR, 3. Four-dimensional integrals
The four-dimensional integrals in E¢C3) are given by

d _ .
d_?z 17] dydz P(y,2)[V(y,2)+V'(y,2)]

2
14(1,2,3,4= — (e~ (- (2% y5)g(y,))
+’ f dydzRy.2)Z(y2)-2yQ (€2 =1,(1,29(y5)9(Ya),
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2 2 2
J4(1,2.34= —(e” (24 (W2%g(xq)g(y,))

=1,(1,29(01299(Y4),

2
K4(1,2,34= ;<87(1/2))(?(llz)xgg(xs)g()(@)a

=1,(1,2) f Dx g(VA 1 x+ 0 3)

A X+ A0
( 12 11 4), (Cﬁ)
viA|
where the two-dimensional integral is defined as
2 2 2
|2(1,2):<—e(1/2)xl(1/2)X2>
v
etz ol
=———exg—5(—| CYH_—||, (C?
™ /|C| [{ Z(Xz Xz

with the matrix

PHYSICAL REVIEW E 64 011919

b1 212
C:
(212 b

and the arguments are defined as

(@3) B 73_(71D11+72D21)}
04/ [Xg—(X1D12tX3D5)) [’

X3— (X1 T1+XT5)

T >
@123= W|th ( l) =Cl( 13),
Vopa— (T12 15+ To2 09 T 223
and
_ ( 33~ B, Zaa— ElZ)
234 B, ¢a—Ep)’
B ( 213011+ 223051, 213Dt 30D 22)
21Dt 35001, 214D+ 354D 0/

¢22 14— 3 122 24

1 ( D213~ 212203,
D12 24— 212214

D=— . (C8
1CT\ 13 5= 3155 1, ) 8
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